
CHAPTER 8

Eddy-current Problems

We now move beyond magnetostatics to tackle a non-stationary model.
The starting point is again Maxwell’s system with Ohm’s law:

(1) − ∂t d + rot h = j,                                            (2)      ∂t b + rot e = 0,

(3)   d = ε e,                   (4)    j = jg + σe,            (5)       b = µ h,

where  jg  is a given current density.  In almost all of this chapter, we
suppose  jg  “harmonic”, that is, of the form1

(6) jg(t) = Re[J
g exp(iω t)],

where  J
g  is a complex-valued vector field , and we’ll look for all fields in

similar form:  h(t) = Re[H exp(iω t)],  e(t) = Re[E exp(iω t)], etc.  The functional
spaces where these fields roam will still be denoted by  IL2,  IL2

rot, etc., but
it should be clearly understood that complexified vector spaces are meant
(see A.4.3).  By convention, for two complex vectors  U = uR + iuI  and  V =
vR + ivI, one has  U · V = uR · vR − i uI · vI + i(u I · vR + uR · vI),  the Hermitian
scalar product being  U · V*, where the star denotes complex conjugation,
and the norm being given by  |U|2 = U · U*, not by  U · U.  Note that an
expression such as  (rot U)2  should thus be understood as  rot U · rot U, not
as  |rot U|2.

The form (6) of the given current is extremely common in electrotechnical
applications, where one deals with alternating currents at a well-defined
frequency  f.  The constant  ω  = 2π  f  is called angular frequency.

Under these conditions, system (1–5) becomes

(7) − iωD + rot H = J,                                                        (8)     iω  B + rot E = 0,
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1
There are other possibilities, such as  Im[ Jg exp(iωt)], or  Re[√2 Jg exp(iωt)], etc.  What

matters is consistency in such uses.

(9) D = ε E,                       (10)      J = Jg + σE,                  (11)    B = µ H.
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8.1  THE MODEL IN  H

The model under study in the present chapter is further characterized by
a few simplifications, the most noteworthy being the neglect, for reasons
we now indicate, of the term  −  iωD  in (7).

8.1.1  A typical problem

Figure 8.1 ([N a], pp. 209–247) shows a case study, typical of computations
one may have to do when designing induction heating systems, among other
examples:  An induction coil, fed with alternative current, induces currents
(called “eddy currents” or, in many national traditions, “Foucault currents”)
in an aluminum plate, and one wants to compute them.

J

P

C

FIGURE 8.1.  The real situation (“Problem 7” of the TEAM Workshop [Na]):  compute
eddy currents induced in the “passive conductor”  C  by an inductive coil, or “active
conductor”, which carries low-frequency alternating current.  (The coil has many
more loops than represented here, and occupies volume  I  of Fig. 8.2 below.)  The
problem is genuinely three-dimensional (no meaningful 2D modelling).  Although the
pieces are in minimal number and of simple shape, and the constitutive laws all
linear, it’s only during the 1980s that computations of similar complexity became
commonplace.

Computing the field inside the coil, while taking its fine structure
into account, is a pratical impossiblity, but is also unnecessary, so one can
replace the situation of Fig. 8.1 by the following, idealized one, where
the inducting current density is supposed to be given in some region  I, of
the same shape as the coil (Fig. 8.2).

This equivalent distribution of currents in  I  is easily computed, hence
the source current  Jg  of (11), with  I  as its support.  (One takes as given a
mean current density, with small scale spatial variations averaged out.)
If  {E, H}  is the solution of (7–11),  H  is then a correct approximation to the
actual magnetic field (inside  I, as well), because the same currents are at
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stake (up to small variations near  I) in both situations.  However, the
field  E, as given by the same equations, has not much to do with the
actual electric field, since in particular the way the coil is linked to the
power supply is not considered.  (There is, for instance, a high electric
field between the connections, in the immediate vicinity of point  P  of
Fig. 8.1, a fact which of course cannot be discovered by solving the problem
of Fig. 8.2.)

I

C

σ > 0

σ = 0 J
g

FIGURE 8.2.  The modelled imaginary situation:  Subregion  I  (for “inductor”) is the
support of a known alternative current, above a conductive plate  C.

These considerations explain why emphasis will lie, in what follows,
on the magnetic field  H, and not on  E  (which we shall rapidly eliminate
from the equations).

8.1.2  Dropping the displacement-currents term

Let us now introduce the main simplification, often described as the “low-
frequency approximation”, which consists in neglecting the term of
“Maxwell displacement currents”, that is  iω  D, in (7).  By rewriting (7),
(9), and (10) in the form  rot H = Jg + σE + iω  εE, one sees that this term is
negligible in the conductor inasmuch as the ratio  ε ω/σ  can be considered
small.  In the air, where  σ = 0, everything goes as if these displacement
currents were added to the source-current  J

g, and the approximation is
justified if the ratio  ||iωD||/||Jg||  is small (||  ||  being some convenient norm).
In many cases, the induced currents  J = σ E  is of the same order of magnitude
as the source current  J

g, and the electric field is of the same order of
magnitude outside and inside the conductor.  If so, the ratio of  iωD  to  J

g  is
also on the order of  ε ω/σ.  The magnitude of the ratio  ε ω/σ  is thus often
a good indicator of the validity of the low-frequency approximation.  In
the case of induction heating at industrial frequencies, for instance  ω  =
100 π, the magnitude of  σ  being about  5 × 106, and  ε = ε0 ≅ 1/(36π × 109) ,
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the ratio  ε ω/σ  drops to about  5 × 10–16, and one cannot seriously object to
the neglect of  − iωD.  Much higher in the spectrum, in simulations related
to some medical practices such as hyperthermia [GF], where frequencies
are on the order of 10 to 50 MHz, the conductivity of tissues on the order of
0.1 to 1, and with  ε ~ 10 to 90 ε0  [K&], one still gets a ratio  ε ω /σ  lower
than  0.3, and the low-frequency approximation may still be acceptable,
depending on the intended use.  “Low frequency” is a very relative concept.

V
dL

FIGURE 8.3.  A case where capacitive effects may not be negligible (d << L).

But there are circumstances in which the electric field outside
conductors is far larger than inside, and these are as many special cases.
Consider Fig. 8.3, for instance, where  L  is the length of the loop and  d
the width of the gap.  A simple computation (based on the relation
V ~ d|E|) shows that the ratio of  ε ωE  in the gap  to the current density in
the conductor is on the order of  ε ω L/dσ, and thus may cease to be negligible
when the ratio  L/d  gets large.  This simply amounts to saying that the
capacitance  C  of this gap, which is in  ε/d, cannot be ignored in the
computation when its product by the resistance  R, which is in  L/σ, reaches
the order of  ω−1  (recall that  RC, whose dimension is that of a time
interval, is precisely the time constant of a circuit of resistance  R  and
capacitance  C).  One can assert in general that dropping  iωD  from the
equations amounts to neglecting capacitive effects.  This is a legitimate
approximation when the energy of the electromagnetic field is mainly
stored in the “magnetic” compartment, as opposed to the “electric” one, in
the language of Chapter 1.

One then has, instead of (7),  rot H = J.  Consequently,  div J = 0, and if
the supports of  Jg  and  σ  are disjoint, one must assume  div Jg = 0, after (11).

To sum up, we are interested in the family of problems that Fig. 8.4
depicts:  a bounded conductor, connected, a given harmonic current, with
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bounded support, not encountering the conductor.  (The last hypothesis is
sensible in view of Fig. 8.1, but is not valid in all conceivable situations.)
The objective is to determine the field  H, from which the eddy currents of
density  J = rot H  in the conductor will be derived.

C
supp( J   )

n

S

O

g

FIGURE 8.4.  The theoretical situation.  Note the convention about the normal unitary
field on  S, here taken as outgoing with respect to the “outer domain”  O = E3 − C.

From the mathematical point of view now, let thus  C  be a bounded
domain of space,  S  its surface (Fig. 8.4), and  J

g  a given complex-valued
field, such that  supp(J

g) ∩ C = ∅, and  div J
g = 0.  Again, we denote by  O

the domain which complements  C ∪ S, that is to say, the topological
interior of  E3 − C  (take notice that  O  contains  supp(J

g)).  Domains  C  and
O  have  S  as common boundary, and the field of normals to  S  is taken as
outgoing with respect to  O.  Conductivity  σ  and permeability  µ  being
given, with  supp(σ) = C, and  σ1 ≥ σ(x) ≥ σ0 > 0  on  C, where  σ0  and  σ1  are
two constants, as well as  µ(x) ≥ µ0  on  C  and  µ(x) = µ0  in  O, one looks for
H ∈ IL2

rot(E3), complex-valued, such that

(12) iωµ H + rot E = 0,    J = Jg + σE,    rot H = J.

8.1.3  The problem in  H, in the harmonic regime

Let us set, as we did up to now,  IH = IL2
rot(E3)  (complex), and

IHg = {H ∈ IH :  rot H = Jg  in  O},   

IH0 = {H ∈ IH :  rot H = 0  in  O}.

We shall look for  H  in  IHg.  One has  IHg = Hg + IH0, with, as in magnetostatics
(cf. the  hj  of Chapter 7),  Hg = rot Ag, where
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A
g(x) = 1

4π
 

E
∫

3

J  (y)

|x – y|

d
         dy.

It all goes as if the source of the field was  H
g, that is, the magnetic field

that would settle in the presence of the inductor alone in space.  The
difference  HŸ = H − H

g  between effective field and source field is called
reaction field.

Let us seek a weak formulation.  From the first Eq. (12), and using the
curl integration by parts formula, one has

0 = ∫E3
 (iωµ H + rot E) · H' = iω  ∫E3

 µ H · H' + ∫E3
 E · rot H'   ∀ H' ∈ IH0.

As  rot H' = 0  outside  C  (this is the key point), one may eliminate  E  by
using the other two equations (12):  for  E = σ−1(J − Jg) ≡ σ−1

J  in  C, and thus  E
= σ−1 rot H.  We finally arrive at the following prescription:  f ind  H ∈ IHg

such that

(13) ∫E3
 i ω  µ H · H' + ∫C σ−1 rot H · rot H' = 0   ∀ H' ∈ IH0.

Proposition 8.1.  If  H
g ∈ IL2

rot(E3), problem (13) has a unique solution  H, and
the mapping  Hg → H  is continuous from  IL2(E3)  into  IH.
Proof.  Let us look for  H  in the form  HŸ + Hg.  After multiplication of both
sides by  1 − i, the problem (13) takes the form  a(HŸ, H') = L(H'), where  L
is continuous on  IH, and

 a (HŸ, H') = ∫E3
 ω  µ HŸ · H' + ∫C σ−1 rot HŸ · rot H'

                                                    + i (∫E3
 ω  µ HŸ · H' − ∫C σ−1 rot HŸ · rot H' ) .

As one sees,  Re[a(HŸ, HŸ*) ≥ C (∫E3
 |HŸ|2 + ∫C |rot HŸ|2)  for some positive

constant  C.  This is the property of coercivity on  IH0  under which
Lax–Milgram’s lemma of A.4.3 applies, in the complex case, hence the
result.  ◊
Remark 8.1.  Problem (13) amounts to looking for the point of stationarity
(“critical point”) of the complex quantity

Z(H) = iω  ∫E3
 µ H2 + ∫C σ−1 (rot H)2,

when  H  spans  IHg.  (There is a tight relationship between  Z  and what is
called the impedance of the system.)  So it’s not a variational problem in
the strict sense, and the minimization approach of former chapters is no
longer available.  By contrast, this emphasizes the importance of
Lax–Milgram’s lemma.  ◊
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The electric field has thus disappeared from this formulation.  One
easily retrieves it in  C, where  E = σ−1 rot H.  One may find it outside  C  by
solving a static problem2, formally similar to magnetostatics in region
O, but this is rarely called for.  (And anyway, this outside field would be
fictitious, as already pointed out.)

To simplify, and to better emphasize the basic ideas, we first consider,
in Section 8.2 below, the case when the passive conductor is contractible
(i.e., simply connected with a connected boundary, cf. A.2.3), as in Fig. 8.4.
It’s obviously too strong a hypothesis (it doesn’t hold in the above case),
but the purpose is to focus on the treatement of the outer region, by the
same method as for “open space” magnetostatics in Chapter 7.  In Section
8.3, we’ll reintroduce loops, but forfeit infinite domains, thus separately
treating the two main difficulties in eddy-current computation.

8.2  INFINITE DOMAINS:  “TRIFOU”

The key idea of the method to be presented now, already largely unveiled
by the treatment of open-space magnetostatics of Chapter 7, is to reduce
the computational domain to the conductor, in order not to discretize the
air region3 around.  The method, implemented under the code name
“Trifou”, was promoted by J.C. Vérité and the author from 1980 onwards
[B1, B V, B V '], and provided at the time the first solution of general
applicability to the three-dimensional eddy-currents problem.

8.2.1  Reduction to a problem on  C

We tackle problem (13), assuming  C  contractible (no current loops, no
non-conductive hole inside  C).  In that case, the outside region  O  also is

2Namely the following problem:  rot E = − iωµ H,  D = ε0 E,  div D = Q  in  O, with  n × E
known on the boundary  S, where  Q  is the density of electric charge outside  C.  The
difficulty is that the latter is not known in region  I, for lack of information on the fine
structure of the inductor.  One may assume  Q = 0  with acceptable accuracy if the objective
is to obtain  E  near  C  (hence in particular the surface charge on  S, which is  ε0  n · E).  Such
information may be of interest in order to appraise the magnitude of capacitive effects.

3It’s not always advisable thus to reduce the computational domain  D  to the passive
conductor  C.  It’s done here for the sake of maximum simplicity.  But “leaving some air”
around  C  may be a good idea, for instance, in the presence of small air gaps, conductors of
complex geometry, and so forth.  Methods for such cases will be examined in Section 8.3.

contractible.
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I

C

S
O

FIGURE 8.5.  Model problem for the study of the hybrid approach in “Trifou”, finite
elements in the conductor  C, and integral method over its boundary  S  to take the
far field into account.  The support of the given current density  Jg  is the inductor  I.
Contrary to Fig. 8.2,  C  here is loop-free, and we restrict consideration to this case to
separate the difficulties.  Section 8.3 will address loops (but shun the far-field effect).

Let’s keep the notations of Chapter 7:  Φ  is the space of magnetic
potentials (the Beppo Levi space of 7.2.1),  ΦO  is composed of the restrictions
to  O  of elements of  Φ, and the set of elements of  ΦO  that have in common
the trace  ΦS  is denoted  ΦO(ΦS).  Let  Φ00  stand4 for the subspace
{Φ ∈ Φ :  Φ = 0  on  D}.  Set

IKg = {H ∈ IHg :  ∫E3
 H · grad Φ' = 0   ∀ Φ' ∈ Φ00}

(the support of the integrand reduces to  O, in fact), and

IK0 = {H ∈ IH0 :  ∫E3
 H · grad Φ' = 0   ∀ Φ' ∈ Φ00} .

We note that

(14) IH0 = IK0 ⊕ grad Φ00,

by construction, and that  IKg =
H

g + IK0, for  H
g  is orthogonal to

grad Φ00, since  div H
g = 0.  (Cf.

the inset drawing.)
By their very definition, the

elements of  IKg  and of the
parallel subspace  IK0  satisfy
div H = 0  in  O.  This property is
shared by the required solution, since  div H = µ0

–1 div 
B = 0  in  O.  One may

4The notation  Φ0  is reserved for an analogous, but slightly larger space (see below).

therefore expect to find this solution in  IKg.  Which is indeed the case:

g

0

g

0

g

0
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Proposition 8.2.  The solution  H  of Problem (13) lies in  IKg.
Proof.  By letting  H' = grad Φ'  in (13), where  Φ'  roams in  Φ00, one gets

0 = iω  ∫E3
 µ H · grad Φ' = iωµ0 ∫E3

  H · grad Φ'   ∀ Φ' ∈ Φ00,

and hence  H ∈ IKg.  ◊
To find the point of stationarity of  H → Z(H)  in  IHg, it is thus enough

to look for it in  IKg, and to check that no other, spurious critical point is in
the way.  Indeed,
Corollary of Prop. 8.2.  Problem (13) is equivalent to find  H ∈ IKg  such that

(15) iω  ∫E3
 µ H · H' + ∫C σ−1 rot H · rot H' = 0   ∀ H' ∈ IK0,

since this is the Euler equation for the search of critical points of  Z  in the
affine subspace  IKg, and it has at most one solution.

Our effort, now, will concentrate on showing that Problem (15) is in
fact “posed on  C”, meaning that a field in  IKg  (or in  IK0) is entirely
determined by its restriction to  C.  I expect this to be obvious “on physical
grounds”, but this doesn’t make the proofs any shorter.  We are embarked
on a long journey, till the end of 8.2.3.  The operator  P  of Chapter 7 will
play a prominent part in these developments.

Remark 8.2.   Set  Φ0 = {Φ ∈ Φ :  grad Φ = 0  on  C}.  By introducing as before
the orthogonal subspaces  IKg0  and  IK00, one would have  IH0 =
IK00 ⊕ grad Φ0, and one could proceed with the same kind of reduction,
with  IKg0  strictly contained in  IKg.  This may look like an advantage, but
in practice, it makes little difference.  ◊

Exercise 8.1.  Show that  ∫S n · H = 0, and prove the analogue of Prop. 8.2 in
the context suggested by Remark 8.2.

8.2.2  The space  HΦΦΦΦ, isomorphic to  IKg

Let now  HΦ  (treated as a single symbol) stand for the vector space of
pairs  {H, ΦS}, where  H  is a field supported on  C  and  ΦS  a surface potential
“associated with”  H, in the precise following sense5:

(16) HΦ = {{H, ΦS} ∈ IL2
rot(C) × H1/2(S) :  HS = gradS ΦS} ,

where  gradS  denotes the surface gradient.  Note that the projection of

5Refer to Fig. 2.5 for  HS, the tangential part of  H.

HΦ  on the first factor of the Cartesian product  IL2
rot(C) × H1/2(S)  is not
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IL2
rot(C)  in its entirety, for there are constraints that  H  must satisfy, in

particular  n · rot H = 0  on  S.  On the other hand,  ΦS  may be any function in
H1/2(S).  One provides  HΦ  with its natural Hilbertian norm, induced by
the norm of the encompassing Cartesian product.  Then,
Proposition 8.3.  HΦ  is isomorphic to  IKg  and  IK0.
Proof.  Since  C  is simply connected, and  rot H

g = 0  in  C, there exists
Φ

g ∈ L2
grad(C)  such that  H

g = grad Φg  in  C.  Let us still denote by  Φg  the
harmonic continuation of this function outside  C.  Now, take  H ∈ IKg.  One
has  rot H = J

g = rot(H
g − grad Φg)  in  O.  Since  O  is simply connected, there

exists a unique  Φ  in  BL(O)  such that the equality  H = H
g + grad(Φ − Φg)

hold in  O.  By restricting  H  and  Φ  to  C  and  S, a map from  H  to the pair
{H, ΦS}  of  HΦ  is therefore defined.  Conversely, such a pair  {H(C), ΦS}
being given, let  Φ  be the exterior harmonic  continuation of  ΦS.  Set  H

equal to  H(C)  in  C  and to  H
g + grad(Φ − Φg)  outside  C.  This enforces

H ∈ IL2
rot(E3) , because both tangential traces  H(C)S  and  H

g
S + gradS(ΦS − Φg

S)
≡ gradSΦS  coincide, after (16).  In  O,  rot H = Jg  and  div H = 0  by construction,
whence  H ∈ IKg.  Moreover, the one-to-one correspondence thus established
(in a way that would apply as well to  IK0, just consider the special case  J

g

= 0) is an isometry.  Hence the announced isomorphisms:  For if  H  is the
difference between two elements of  IKg, then  H = grad Φ  outside  C, and

∫E3
 |H|2 + ∫C |rot H|2 = ∫C |H|2 + ∫C |rot H|2 + ∫O |grad Φ|2

                                                       = ∫C |H|2 + ∫C |rot H|2 + ∫S PΦS ΦS ,

which is indeed the square of the norm of the pair  {H, ΦS}  in the product
IL2

rot(C) × H1/2(S).  ◊

Remark 8.3.  The isomorphism depends of course on  Φg, which in turn depends
on  Jg, up to an additive constant.  ◊

8.2.3  Reformulation of the problem in  HΦΦΦΦ

So, let  Φg
S  be the function on  S  associated with  J

g  that specifies the
above isomorphism.  One has

Z(H) = iω  ∫E3
 µ H2 + ∫C σ−1 (rot H)2

           = iω  ∫C µ H2 + ∫C σ−1 (rot H)2 + iωµ0 ∫O (H
g + grad(Φ − Φg) )2,

and we are looking for the critical point of this function in  HΦ.  Since,
thanks to the properties of  P,
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 ∫O (H
g + grad(Φ − Φg) )2 = ∫O (H

g − grad Φg)2 + 2 ∫S n · Hg  ΦS

                                                         + ∫S PΦS ΦS − 2 ∫S PΦ
g
S ΦS ,

Problem (15), equivalent to the initial problem (13) under our assumptions,
amounts to finding the critical point of the function  ZŸ  (equal to  Z  up to a
constant) thus defined:

ZŸ( {H, ΦS}) = iω  [∫C µ H2 + µ0 ∫S PΦS ΦS] + ∫C σ−1 (rot H)2

                                            + 2 iω  µ0 ∫S (n · Hg − PΦ
g
S) ΦS,

whence, by taking the Euler equation, the following result (index  S  is
understood in  ΦS,  Φ' S  and  Φg

S) :
Proposition 8.4.  When  C  is contractible, (13) is equivalent to find  {H, Φ}
in  HΦ  such that

(17) iω  [∫C µ H · H' + µ0 ∫S PΦ Φ'] + ∫C σ−1 rot H · rot H'

                               = iω  µ0 ∫S (PΦ
g − n · Hg) Φ'    ∀ {H', Φ'} ∈ HΦ.

This is the final weak formulation, on which “Trifou” was based.  The
pending issue is how to discretize it.  Clearly,  H  and  H'  in (17) will be
represented by edge elements, and  Φ  and  Φ'  by surface nodal elements
(these are compatible representations, thanks to the structural properties
of the Whitney complex).  The discretization of terms  ∫S PΦ Φ'   and  ∫S PΦ

g Φ'
by Galerkin’s method will make use of the matrix  P  of Chapter 7 (Subsection
7.4.5, Eq. (48)).

8.2.4  Final discrete formulation

Let  K = {He :  e ∈ E0(C);  ΦΦΦΦn :  n ∈ N(S)}  be the vector of all degrees of
freedom (complex valued):  one DoF  He  for each edge inside  C  (that is,
not contained in  S) and one DoF  ΦΦΦΦn  for each surface node.  The expression
of  H  in  C  is thus

H = ∑ e ∈ E0(C) He we + ∑ n ∈ N(S)  ΦΦΦΦn grad wn.

(This is an element of  W1
m(C), thanks to the inclusion  grad W 0 ⊂ W1. )

Then (17) becomes

(18) iω  (M(µ) + µ0 P) K + N(σ) K = iω  µ0 (PΦΦΦΦ
g − Lg) ,

with obvious notations, except for  L
g, defined by  L

g
m = ∫S n · H

g  wm  for all
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m ∈ N (S), and other components null.  (Beware, though  M  is very close to
the mass-matrix  M1(µ)  of the mesh of  C, it’s not quite the same, just as
N(σ)  is not quite  RtM2(σ

−1)R.)  As in Chapter 7,  P   bears only on the
“ΦΦΦΦ  part” of vector  K, a priori, but is bordered by zeroes in order to give
sense to (18).  (Same remark about  PΦΦΦΦ

g.)  Matrices  M,  P,  and  N  are
symmetric, but because of the factor  i, the matrix of the linear system (18)
is not Hermitian.  In spite of this, the conjugate gradient method, the
convergence of which is only guaranteed in the Hermitian case, in theory,
works fairly well in practice, with proper conditioning.

Computing the right-hand side of (18) is straightforward:  H
g  is known

by the Biot and Savart formula, and the vector  ΦΦΦΦg  of nodal values is
derived from the circulations of  Hg  along the edges of  S.

8.2.5  Transient regimes

From (18) to a scheme for the temporal evolution problem is but a short
trip, compared to what has been done, so let’s show the way, even though
this is beyond the objectives of this chapter.  Now the given current  j g  is
real-valued and time-dependent, and the field  h  is given at time  0,
with  div(µh(0)) = 0.  The DoFs are real-valued again.  The evolution
scheme, discrete in space but not yet in time, is

(19) ∂t[(M(µ) + µ0 P) k]  + N(σ) k = µ0 ∂t(Pϕϕϕϕg − lg)

(k(0)  given by the initial conditions, and  l  similar to  L, but real-valued).
Over a temporal interval  [0, T], with a time step  δt, one may treat this
by a Crank–Nicolson scheme [CN] :  k0 = k(0), then, for each integer  m
from  0  to  T/δt − 1,

(20) (M(µ) + µ0 P) (km + 1 − km ) + δt  N(σ) (km + 1 + km )/2

                = µ0 P [ϕϕϕϕ
g((m + 1) δt) − ϕϕϕϕg(mδt)] + lg((m + 1) δt) – lg(m δt) .

If  km  is known, this is a linear system with respect to the unknown  km + 1.
(Actually, better take  km + 1/2 ≡ (km + 1 + km )/2  as unknown.  Then
km + 1 − km  = 2(km + 1/2 − km).  Unconditionally stable as it may be, the
Crank–Nicolson scheme may suffer from numerical oscillations (“weak
instability”), to which the sequence of the  km + 1/2s  is less sensitive than
the  kms.)

This scheme can easily be adapted to the case of a nonlinear  b–h
law.  See [Bo] for details.
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Remark 8.4.  When  jg  is sinusoidal, using this scheme is a viable alternative
to solving (18) directly.  One should use an informed guess of the solution
as initial condition, and monitor the time average over a period,
(2π)–1ω∫t

t
– 2 π/ω exp(iω  s) k(s) ds, duly approximated by a sum of the kind

N–1 ∑  j = 1, N  exp(iω (m + 1/2 – j)δt) km + 1/2 – j, where  Nδt = 2π/ω  , the
period.  This will converge, relatively rapidly (no more than three or four
periods, in practice) towards the solution  K  of (18).  Such a “time domain”
approach to the harmonic problem can thus be conceived as another
iterative scheme to solve (18).  Fast Fourier Transform techniques make
the calculation of time averages quite efficient.  ◊
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Now we change tack.  Let  D  be a simply connected domain containing the
region of interest (here the conductor  C  and its immediate neighborhood,
Fig. 8.6), the inductor  I, magnetic parts where  µ ≠ µ0, if such exist, and
suppose either that  D  is big enough so that one can assume a zero field
beyond, or that  n × h = 0  on  ∂D  for physical reasons (as in the case of a
cavity with ferromagnetic walls, used as a shield to confine the field
inside).  We thus forget about the far field and concentrate on difficulties
linked with the degeneracy of the eddy-current equations in regions where
σ = 0.

I
C

D

FIGURE 8.6.  Computational domain  D, containing the region of interest, and large
enough for the boundary condition  n × h = 0  on  ∂D  to be acceptable.  (In practice,
the size of the elements would be graded in such a case, the farther from  C  the
bigger, the same as with Fig. 7.2.)
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8.3.1  A constrained linear system

Let  m  be a simplicial mesh of  D.  Functional spaces, a bit different now,
are  IH = {H ∈ IL2

rot(D) :  n × H = 0  on  ∂D}  and

(21) IHg = {H ∈ IH :  rot H = Jg  in  D – C},  

(22) IH0 = {H ∈ IH :  rot H = 0  in  D – C}.

Now we know the paradigm well, and we can state the problem to solve
without further ado:  f ind  H ∈ IHg  such that

(23) ∫D i ω  µ H · H' + ∫C σ−1 rot H . rot H' = 0   ∀ H' ∈ IH0.

As we intend to enforce null boundary conditions on the boundary of  D,
let us remove from  N , E , F  the boundary simplices, as we did earlier in 
7.3.1, and for convenience, still call  N , E , F, T  the simplicial sets of this
“peeled out” mesh.  Apart from this modification, the notation concerning
the spaces  W p  and the incidence matrices is the same as before.  In
particular,  W1

m  is the span—with complex coefficients, this time—of
Whitney edge elements  we, for all  e  in  E.  As this amounts to have null
circulations along the boundary edges, a field in  W1

m  can be prolongated
by  0  to all space, the result being tangentially continuous and therefore
an element of  IL2

rot(E3).  So we can identify  W 1
m  with a subspace of  IL2

rot(E3) .
Let us set  IHm = W1

m, denote by  IH  the isomorphic finite-dimensional
space  CE, composed of all vectors  H = {He :  e ∈ E } , and call  E = #(E )  the
number of inner edges.  For  U  and  U'  both in  IH, we set

(U, U') = ∑ e ∈ E Ue · U' e

              ≡ ∑ e ∈ E (Re[Ue] + i Im[Ue]) · (Re[U' e] + i Im[U' e]).

(Again, beware:  This is not the Hermitian scalar product.)  This way, an
integral of the form  ∫D α  U · U', where  α  is a function on  D  (such as  µ, for
instance), possibly complex-valued, is equal to  (M1(α) U, U')  when  U =
∑ e ∈ E Ue we   and  U' = ∑ e ∈ E U' e we .

We know from experience the eventual form of the discretized problem:
It will be f ind  H ∈ IHg

m  such that

(24) ∫D i ω  µ H · H' + ∫C σ−1 rot H . rot H' = 0   ∀ H' ∈ IH0
m,

where  IHg
m  and  IH0

m  are parallel subspaces of   IHm.
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But these subspaces must be constructed with some care.  One cannot
simply set  IHg

m = W 1
m ∩ IHg ≡ {H ∈ W1

m :  rot H = Jg  in  D – C}, because  J
g  has

no reason to be mesh-wise constant (which  rot H  is, if  H ∈ W1
m), although

this happens frequently.  Failing that,  W 1
m ∩ IHg  may very well reduce

to  {0}.  So we need to find a subspace of  W1
m  that closely approximate

W1
m ∩  IHg.  For this, let  FC ⊂ F   be the subset of “conductive” faces, i.e.,

those inside  C, faces of its boundary being excluded.  Let us set

 IHg
m = {H ∈ W1

m :  ∫f n · rot H = ∫f n · Jg   ∀ f ∉ FC} .

This time,  IHg
m  is in  IHm ≡ W1

m, and the isomorphic space  IHg  is character-
ized by

(25) IHg = {H ∈ IH :  (R H)f = Jf
g   ∀ f ∉ FC} ,

where  Jf
g  is the intensity  ∫f n · Jg  through face  f  and  R  the edge-to-faces

incidence matrix.  As in Chapter 6, we shall abridge all this as follows:
IHg = {H ∈ IH :  LH = Lg}, where  L  is a submatrix of  R, the dimensions of
which are  (F − FC) × E  (F  inner faces in  D, minus the  FC  conductive faces)
and  Lg  a known vector.  Denoting by  IH0  the kernel of  L  in  IH, we may
now reformulate (24) like this:  f ind  H ∈ IHg  such that

(26) i  ω  (M1(µ) H , H') + (M2(σ
−1) R H , R H') = 0   ∀ H' ∈ IH0.

This is, as in Chapter 6, a constrained linear system, which can be rewritten
as follows:

  i  ω  M1(µ) + Rt M2(σ
−1)R       L

t           H                  0
(27)                                                                                                        =                ,

                        L                                     0                           v                  L
g

where the dimension of the vector-valued Lagrange multiplier  V

is  F − FC.
Exercise 8.2.  Find a physical interpretation for the  Vfs.

One can very well tackle the system (27) as it stands (cf. Appendix B).
But for the same reasons as in Chapter 6, one may prefer to use a
representation of  IHg  and  IH0  in terms of independent degrees of freedom.
There are two main ways to do that.

8.3.2  The tree method

We suppose  C  contractible for a while.  Let  NC , EC , FC  denote the sets of
nodes, edges, and faces inside  C.   Let us form a spanning tree  E T  (cf. 5.3.2)
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for the mesh of the closure of  D – C.  (Some edges of the interface  ∂C  will
belong to  E T , and form a spanning tree for this surface.)  Let’s recall that
for each edge of  E – EC – E T, or co-edge, one can build a closed chain over
D – C  by adding to it some edges of  E T, with uniquely determined
coefficients.  The idea is to select as independent DoFs the mmf’s along
the  EC  edges inside  C  and the  E T  edges of the tree.  Then, the mmf’s
along the co-edges can be retrieved by using (25), as explained in the next
paragraph.  This vector of independent DoFs will be denoted  U.  The
corresponding vector space, isomorphic to  CEC + ET

, is denoted  U.
For each edge  e  of  EC ∪ E T, set  He = Ue.  Any other edge  e ∈ E  is a

co-edge, and is thus the closing edge of a circuit all other edges of which
come from  E T, by construction.  Call  C(e) ⊂ E T  the set composed of these
other edges, and  cε  the chain-coefficient assigned to edge  ε ∈ C(e)  by the
procedure of 5.3.2.  The circuit they form bounds a two-sided 6 and hence
orientable polyhedral surface  Σe, formed of faces of  F – FC.  Each of the
two possible fields of normals on  Σe  orients its boundary  ∂Σe, as we saw in
Chapter 5.  Let  n  be the one for which  e  and  ∂Σe  are oriented the same
way.  Now, assign the value

(28) He = ∫Σe
 n · Jg + ∑ ε ∈ C(e) cε Uε,

as DoF to co-edge  e.  This completes the mmf vector  H, hence a field  H =
∑e ∈ E He we, associated with  U.  We’ll denote this correspondence by
H = f(U, Jg) .  (Beware:  U  is a vector,  H  is a field.)  Let now

(29) IKm
g = {H :  H = ∑ e ∈ E He we} ≡ {f(U, Jg) :  U ∈ U}

be the span of these fields in  IHm, and  IKm
0  be the parallel subspace,

which is obtained by exactly the same construction, but with  J
g = 0.  Thus

constructed,  IKm
g  and  IKm

0  coincide with  IHm
g  and  IHm

0.
As a bonus, the above construction gives an approximation  H

g
m ∈ W 1

m
of the source-field  H

g:  the field corresponding to  U = 0, that is  H
g
m =

f (0 , J
g) .  Note that  IKg

m = H
g
m + IK0

m, and hence  IHg
m = H

g
m + IH0

m  as well,
that is to say,

(30) IHg
m = {H

g
m + H :   H ∈ IH0

m} .

6This is not supposed to be obvious (but please read on, and return to the present note at
leisure).  The circuit based on a co-edge can be a knot of arbitrary complexity, so it’s not so
clear that it always bounds an orientable and non-self-intersecting surface.  But this is true,
being a theorem in knot theory.  Such a surface, called a Seifert surface  (cf., e.g., [Ro]), always
exists [Se], however tangled the knot may be.  See Fig. 8.9 in Exercise 8.3 at the end.
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Since  IKg
m  and  IK0

m  coincide with  IHg
m  and  IH0

m, all we have to do
now is throw into (24) the expressions  H = f(U, Jg)  and  H' = f(U', 0)  in order
to obtain a linear system in terms of  U, the form of which is

(31) ( iω  M + N) U = Lg,

with  M  and  N  symmetrical, non-negative definite, and  M + N  regular.
But this time  M  and  N  largely differ from  M1(µ)  and  Rt M2(σ

−1)R  (only
the blocks relative to the edges of  EC  coincide), and overall, their
conditioning greatly depends on the tree construction.  (To each spanning
tree corresponds a particular basis for the space  IHm

0.)  Not all trees are
thus equivalent in this respect, and finding methods that generate good
spanning trees is a current research subject.

The matrix  iω  M + N  is not Hermitian, and this raises specific
algorithmic problems.  So here begins the numerical work (to say nothing
of the programming work, which is far from run-of-the-mill), but we shall
stop there, because the modelling work is done—at least in the case when
C  is contractible.

So how can the technique be generalized to the non-contractible case?
If there are only “holes”, i.e., if  C  is simply connected but with a non-
connected boundary, no difficulty:  Just build a spanning tree for each
connected component of  D – C.  The problem is with “loops”.  Suppose for
definiteness there is a single loop in  C, as in Fig. 8.6.  Then, by a deep but
intuitively obvious result of topology (“Alexander’s duality”, cf. [GH]),
there is also one loop in  D – C.  There are now two kinds of co-edges,
depending on whether the circuits they close surround the conductive loop
or not.  (Note that those which do surround the loop do not bound a
polyhedral surface of the kind discussed above, that is, made of faces in
F – FC, and this is what characterizes them.)  Next, select one of these
loop co-edges, and add it to the initial tree, thus obtaining a “belted tree”.
Thanks to this added edge, the circuits of all remaining co-edges do bound,
as we noticed in 5.3.2.  Obviously (by Ampère), the DoF of the belt fastener
is the intensity in the current loop.  There is one additional DoF of this
kind for each current loop.  With this, the key result (IKm

g  and  IKm
0  coincide

with  IHm
g  and  IHm

0) stays valid, and everything elses goes unchanged.

8.3.3 The  H–ΦΦΦΦ  method

The  H–Φ  method is “edge elements and nodal elements in association” and
stems from the second way to obtain a set of independent degrees of freedom.
With the previous method, the DoFs were all magnetomotive forces, those
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along the selected edges.  Now, we’ll have two different kinds of DoF:
Besides the mmf’s along edges inside  C, there are others, associated with
the nodes in the air and on the conductor’s surface, which can be interpreted
as nodal values of the magnetic scalar potential, as we shall see.  Again,
let us first treat the contractible case.

Let  EC, as above, be the subset of edges inside  C, that is, entirely
contained, apart from the extremities, in the interior of  C.  The set
N  −  N C  is composed of the nodes which are neither in  int(C), nor in  ∂D.
Let  EC  be the number of edges in  EC  and  N 0  the number of nodes in
N  −  N C .  Last, call  U  (isomorphic to  C EC + N 0) the space of vectors  U ≡
{H, ΦΦΦΦ} = {He :  e ∈ EC , ΦΦΦΦn :  n ∈ N  − N C}, where the degrees of freedom  He  and
ΦΦΦΦn  are now unconstrained complex numbers.  Let at last  IK0

m  be the space of
vector fields of the form

(32) H = ∑ e ∈ EC
 He we + ∑ n ∈ N − NC

 ΦΦΦΦn grad wn.

Proposition 8.5.  IK0
m  is isomorphic to  U.

Proof.  This amounts to saying that degrees of freedom are independent,
that is to say,  H = 0  in (32) implies all  He  and  ΦΦΦΦn  are zero.  We know this
is the case of the  He’s, by restriction to  C  (cf. Remark 5.2).  As for the  ΦΦΦΦn’s,
0 = ∑  n  ΦΦΦΦn grad w n ≡ grad(∑ n ΦΦΦΦn wn)  implies  ∑ n  ΦΦΦΦn wn  equal to a constant in
the only connected component of  D – C, a constant which is the value of
this potential on  ∂D, that is, 0.  Again we know (cf. Exer. 3.8) that all  ΦΦΦΦn‘s
must vanish in this case.  ◊

Proposition 8.6.  I f  C  i s contractible,  IK0
m = IH0

m  ≡ {H ∈ W 1
m :  rot H = 0  out

of  C}.
Proof.  After (32), one has  rot H = ∑ e ∈ E C

 He rot we, and  supp(rot we)  is
contained in the closure of  C, so  rot H = 0  out of  C.  Conversely, if  H ∈ W1

m
and if  rot H = 0  in  D − C, which is simply connected, there exists a linear
combination  Φ  of the  w n, for  n ∈ N  − NC, such that  H = grad Φ  in  D – C,
hence (32).  ◊

Now let  H
g
m ∈ W1

m  be an approximation of the source field.  Again,
IHg

m = H
g
m + IH0

m, and we can “suffix everything with  m ”, hence the desired
Galerkin approximation for problem (23), the same, formally, as (24):  f ind
H ∈ IHg

m  such that

(33) ∫D i ω  µ H · H' + ∫C σ−1 rot H . rot H' = 0   ∀ H' ∈ IH0
m.

This is, in an obvious way, a linear system with respect to the unknowns
He  and  ΦΦΦΦn, the form of which is similar to (31).
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To build  Hg
m, two techniques are possible.  The first one consists of first

computing  H
g  by the Biot and Savart formula, then evaluate the circulations

He
g  of  H

g  along all edges inside  D.  (For edges on the boundary, one sets  He
g

= 0, which does introduce some error, but compatible with the desired
accuracy,7 if the mesh was well designed.)  One then sets  H

g
m =

∑e ∈ E Hg
e we.

However, this does not warrant  rot H
g
m = 0  where  Jg = 0, as it should

be, for the Biot and Savart integral is computed with some error, and the
sum of circulations of  Hg  along the three edges of a face where no current
flows may come out nonzero, and this numerical error can be important
when the edges in question happen to be close to inductor parts.  This is a
serious setback.

Hence the idea of again using the spanning tree method, which
automatically enforces these relations.  But contrary to the previous section,
it’s not necessary to deal with all the outside mesh to this effect.  One
will treat only a submesh, as small as possible, covering the support of  J

g.
Of the set  E g  of edges of this submesh, one extracts a spanning tree  E t,
and one attributes a DoF to each co-edge the same way as in (28).  One
finally sets  H

g
m = ∑ e ∈ E g − Et He

g we.

8.3.4  Cuts

Difficulties with the non-contractible case are about the same as in
Subsection 8.3.2.  Holes are no problem:  Just pick one node  n  inside each
non-conductive cavity within  C  and set  ΦΦΦΦn = 0  for this node.  But the
“loop problem” arises again, for if  D − C  is not simply connected,  IK0

m  is
strictly included in  IH0

m :  Missing are the fields  H  that, although curl-free
in  D − C, are only l oca l gradients, or if one prefers, gradients of multivalued
potentials  Φ.

Hence the concept of “cuts”, that is, for each current-loop, a kind of
associated Seifert surface (cf. Note 6 and Exer. 8.3), formed of faces of the
mesh.  (Figure 8.7 will be more efficient than any definition to suggest
what a cut is, but still, recall the formal definition of 4.1.2:  a surface in
D ‹, closed mod  C, that doesn't bound mod  C.)  One then doubles the nodal
DoF for each node of this surface (Fig. 8.7, right):  to  n+  is assigned the
DoF  ΦΦΦΦ* n+

 = ΦΦΦΦn, and to   n−  the nodal value  ΦΦΦΦ* n–
 = ΦΦΦΦn + J, where  J  is the

7If this is not the case, one may always resort to solving the magnetostatics problem,
rot Hg = Jg  and  div Hg = 0  in  D, with the same boundary conditions.

loop-intensity.  Let us denote by  N*  the system of nodes thus obtained,
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and set  Φ = ∑n ∈ N* ΦΦΦΦ* n wn, where the  wn±  are supported on one side of  Σ, as
suggested on Fig. 8.7:  Then  Φ  is multivalued in  D − C, and the fields  H =
∑e ∈ EC

 He we + ∑ n ∈ N* ΦΦΦΦ* n grad w n  do fill out  IH0
m.  It all goes again as if

there was one extra DoF (the unknown intensity  J) for each current loop.

ν
J

n

–

+

n
Σ

C

Σ

J

1

0 0

00

ν

Σ

FIGURE 8.7.  Cutting surface  Σ, and doubling of nodes in  Σ.  The loop intensity  J  is
also the circulation of the magnetic field along a circuit crossing  Σ  (along with the
normal  ν) and is therefore equal to the jump of  Φ.  Bottom right:  support of the
nodal function  wn+.

The big difficulty with this method is the construction of cuts.  Several
algorithms have been proposed [Br, HS, LR, VB], all more or less flawed
because of a faulty definition of cuts.  All these early works assumed,
explicitly or not, that cuts must constitute a system of orientable (i.e.,
two-sided) surfaces, having their boundaries on  ∂C  (“closed modulo  C
but non-bounding”, in the parlance of Chapter 4)—which is all right up to
now—but also, such that the complement in   D  of their set union with   C,
that is, what remains of air after cuts have been removed, be simply
connected.  And this makes the definition defective, as Fig. 8.8 suffices to
show:  The complement of the set union of  C  and of the Seifert surface  Σ
is not simply connected, but the three components of  Σ  do qualify as cuts
notwithstanding, for the magnetic potential  Φ  is effectively single-valued
outside  C ∪ Σ.  See the controversy in the IEE Journal [B&] triggered by
the publication of [VB] for a discussion of this point.  What cuts should do
is make every curl-free field equal to a gradient in the outer region minus
cuts.  Credit is due to Kotiuga and co-workers [Ko] for the first correct
definition of a cut, a constructive algorithm, and an implementation [GK].

It cannot be assessed, as the time this is written, whether this method
is preferable to the “belted tree” approach.  This is the matter of ongoing
research [K&].  Let us, however, acknowledge that the problem of “knotted
loops” is really marginal.  Even common loops are infrequent in everyday
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work, because good modelling, taking symmetries into account, often allows
one to dodge the difficulties they might otherwise raise.  Eddy-current
codes that were implemented, years ago, with cut-submodules based on
some of the above-mentioned premature methods, on which current research
is trying to improve, still work superbly in their respective domains of
validity [BT, RL].

γ

C

ΣC

Σ
Σ

Σ
C

C

γ2

1

FIGURE 8.8.  (Look first at Fig. 8.9 for the way  Σ, here in three components, is
constructed.)  If some parts of the conductor (here made of four distinct connected
components) are knotted or linked, it may happen that the complement of  C  and  Σ
is not simply connected, although the cuts  Σ  do play their role, which is to forbid
multivalued potentials in the outside region.  (Apply Ampère to circuits  γ1  and  γ2.)

The adaptation of the previous ideas to evolutionary regimes is
straightforward, along the lines of 8.2.5.

8.4  SUMMING UP

What is special with eddy-current problems, and explains the almost
unclassifiable variety of methods to deal with them, is the difference in
the nature of the equations in the conductor and in the air.  From the
mathematical point of view, we have “parabolic equations” in conductors,
“elliptic equations” in the air.  For sure, passing in complex representation
makes them elliptic all over, but different operators apply in the two
main categories of regions:  the “curl–curl” operator in the conductors, the
“div–grad” operator in the air.  We saw in Chapter 6 how intricate the
relations between these two basic differential operators could be, marked
by deep symmetries as well as striking differences.  In the eddy-current
problem, they coexist and must be compatible in some way at the common
boundary.  No wonder there is such a variety of methods for eddy currents!
A few general ideas emerge, however:
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1.   Inside conductors, edge elements are the natural choice.
2.   Outside, the magnetic potential is the most natural representation.
3.  The structural relation  grad W 0 ⊂ W1  makes the two previous

approaches compatible, be it in air volumes (H–Φ  method) or on
air–conductor interfaces (the “Trifou” hybrid method).

4.  Two types of numerical treatment of the magnetic potential are
available:  integral equations (as we used to precompute the Dirichlet-to-
Neumann map) and finite elements.

5.  Multivaluedness of the magnetic potential, in the case of current
loops, compounds difficulties, but tree and cotree methods offer solutions.

All these ideas can be combined.  For instance, one may associate the
H–Φ  method in a bounded domain, thus dealing with current loops, and
the integral equation method to account for the far field, provided the
computational domain is simply connected.  (There are cases when the
latter restriction is still too much, however.  It can be lifted thanks to the
notion of vectorial Dirichlet-to-Neumann operator (end of Chapter 7).
Cf. [Ve] for the early theory, and [RR] for an implementation, and an
application to the problem of Fig. 8.2.)  The variety of associations thus
made possible is far from being exhausted, as witnessed by an abundant
production of research papers (cf. especially IEEE Trans. on Magnetism,
IEE Proc., Series A, COMPEL) .

EXERCISES

Exercises 8.1 and 8.2 are on p. 227 and p. 233.

FIGURE 8.9.  A knot, its Seifert surface (which has two distinct faces, as one can see,
and is thus orientable), and the construction method.
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Exercise 8.3.  Figure 8.9 explains how to build a Seifert surface (as defined
in Note 6) for a relatively simple knot (the procedure makes sense for
l inks, too, as on Fig. 8.8, right):  Work on an orthogonal plane projection of
the knot, and select an arbitrary orientation along it;  start from a point
and follow the selected direction, never crossing at an apparent intersection,
but instead, jumping forward to another part of the knot, and going on in
the right direction, as suggested by the middle of Fig. 8.9;  do this as
many times as possible, thus obtaining as many pieces of the Seifert surface;
these pieces are then seamed together by “flaps”, as explained on the
right of the figure, in order to obtain a single, two-sided surface.  Practice
on some knots of your own design.  Show (by a series of drawings) that the
surface thus obtained in the case of Fig. 8.9 is homeomorphic to a punctured
torus.
Exercise 8.4.   Show that if a circuit  γ   bounds a surface  Σ  entirely contained
in a current-free region, then  ∫γ τ · h = 0.  The converse happens to be true.
For instance, the circulation of  h  along  γ 1  on Fig. 8.8 is null whatever the
current in  C.  Show that  γ 1  is indeed the boundary of a surface which
does not encounter  C.
Exercise 8.5.  Can you devise a continuous current distribution on a torus,
the way Fig. 8.10 suggests, such that the magnetic field outside be zero,
though the induction flux through a surface bounded by  γ   is not?

j

γ

FIGURE 8.10.  Such a current distribution can correspond to a null magnetic field in
the outside region.  Part of the hollow torus is cut off for better view.  The conductive
section is shaded.  Circuit  γ  will be relevant to the next Exercise.

Exercise 8.6.   In the situation of Fig. 8.10, suppose the intensity of the
current distribution changes in time (but not the shape of its spatial
distribution).  Assuming  γ   is a conductive thread, will it support an induced
current?  Do you see a paradox in this?  Can you solve it within eddy
current theory (that is, without invoking retardation effects and the like)?
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Exercise 8.7.   The original Bath cube problem is described by Fig. 8.11.
Differences with respect to the static version are:  The mmf  I  is alternative,
at angular frequency  ω , and an aluminum cube is placed inside each quarter
of the cavity, away from the bottom and from the walls.  Do the modelling
(continuous and discrete formulation).

S
h
1

x

S
h

0

y

S
b

S
b

C

z

FIGURE 8.11.  The Bath-cube problem (one quarter of the cavity, with conductive
cube  C  included).

HINTS

8.3.  You may have difficulties with some drawings, for
example if you sketch the trefoil knot of Fig. 8.9 like this:
(it’s the same knot).  In that case, imagine the knot as
projected on the surface of a sphere of large radius, instead
of on the plane.
8.4.  Stokes.
8.5.  Call  D  the domain occupied by the torus of Fig. 8.10, including the
inner bore, and  C  the conductive part.  Build a smooth solenoidal field  a,
curl-free out of  C, and make sure the circulation of  a  along  γ   is non-zero.
This means  a = grad ψ  outside  D, but with a multivalued  ψ, so use a cut.
Similar thing in  D – C.  Extend  a  to  C  so that  a  is curl-conformal, then
rectify  a  to make it sinusoidal in all space.  Then take  b = rot a,  h =
µ0

–1 b, and  j = rot h.
8.6.  Let  j  be the stationary current distribution of Exer. 8.4,  h  the
corresponding field, and assume a current density  J(t) j, hence an induction
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field  µ0 J(t) h.  Its flux through the loop  γ   is not null, and changes with
time, so there is an emf along  γ , by Faraday's law, which may drive a
current in the conductive loop.  Now, to quote from [PK], “The commonly
asked question is:  ‘We know that charges in the loop move in response to
an emf produced by a changing magnetic field;  but since there is no magnetic
field outside the solenoid, how do the charges in the loop know they must
move?’.”  What of it?
8.7.  Use the  H–Φ  method:  edge elements in  C, nodal elements for  Φ  in
D – C, scalar DoFs for  Φ  on  ∂C.  No constraints on  Φ  on surface  Sb.   On  Sh

0
and  Sh

1, set  Φ = 0  and  Φ = I  respectively, where  I  is the imposed  mmf
between the poles.

SOLUTIONS

8.3.  Figure 8.12.

FIGURE 8.12.  Homeomorphism between a punctured torus and the Seifert surface of
a trefoil knot.

8.4.  Figure 8.13 displays an orientable surface (a punctured torus, again)
with  γ 1  as its boundary.  Since  rot h = 0  outside  C, one has  ∫γ1 τ · h =
∫Σ n · rot h = 0, whatever the intensity in  C.
8.5.  Let  Σext  be a "cut" in  E3 – D, and  Oext = E3 – D – Σext.  Let  ψext  be the
minimizer of  ∫Oext

 |grad ψ|2  in  {ψ ∈ BL(O) :  [ψ]Σext
 = F ext}, with  Fext ≠ 0.
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Similarly, select  ψext ∈ arginf{∫B |grad ψ|2 : ψ' ∈ BL(Oint) :  [ψ']Σint
 = Fint}

(these minimizers differ by an additive constant), where  Σint  is a cut
inside  D – C.  Set  a = grad ψi  in  Oi, with  i = ext  or  int.  Extend  a  to a
smooth field  aŸ  in  D – C, with null jumps  [n × a Ÿ]∂C  on the air–conductor
interface.  Now  aŸ ∈ IL2

rot(E3)  and its circulation along  γ   is nonzero, but  a Ÿ

is not solenoidal.  Set  a = a Ÿ + grad ψŸ, where  ψŸ  is the unique element of
BL(E3)  such that  ∫E3

 (aŸ + grad ψŸ) · grad ψ' = 0  ∀ ψ' ∈ BL(E3).  Now  div a =
0  in all space, while its curl hasn't changed.  Take  h = µ0

–1 rot a  and  j =
rot h.  The field created by  j  is  h, and has the required properties.  By
playing on the values of  Fext  and  F int, one may control the coil intensity.
The prat ica l realization is another issue, but is possible in principle:  One
may always imagine bundles of thin separate conductors coiled around
the inner torus, along the small circles, and fed by small batteries.

Σ
γ1

C

FIGURE 8.13.  Circuit  γ1  does bound an orientable surface contained in the current-free
region.  The conductor  C  is the black knot.

8.6.  Did you feel confused by this argument?  Rightly so, because the
expression, “emf produced by a changing magnetic field” i s subtly confusing.
The causal phenomenon by which changes of magnetic field generate
electric fields is ruled by the equations  rot e = – ∂tb,  div(ε0e) = 0  outside
C, with tangential  e  known on  ∂C, so it has an inherently non-local
character.  Changes of magnetic field in some region (here, domain  D)
thus produce emf’s away from this region, including at places where the
magnetic field is zero and stays zero.  (This is no more paradoxical than
the fact that changes in electric charge can modify the electric field in
regions where there is no charge.)  So there is an induced current in the
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loop, and its value can be predicted by eddy-current theory alone.  No
need to argue about the “physical unreality” of the situation” (all eddy
current modellings are “unreal” to a comparable degree!) and to add
irrelevant considerations on the way the solenoid is energized, on finite
propagation speeds, and so forth [PK, Te].

This problem is relevant to discussions of the Aharonov–Bohm effect
(cf. Remark A.2).  Most papers on the subject assume a straight, infinite
solenoid, instead of the above toroidal one, which makes some analytical
computations easier, but also needlessly raises side issues.
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