
CHAPTER 6

The “curl side”:
Complementarity

We return to the model problem of Chapter 2, the magnetostatics version
of the “Bath cube” setup.  This time, the two mirror symmetries with
respect to vertical planes are taken into account (Fig. 6.1):  The field  b  is
obviously invariant with respect to both reflections, hence  n · b = 0  on
these planes.1
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FIGURE 6.1.  Notations for solving the Bath-cube magnetostatics problem in a quarter
of the cavity.  Symmetry planes bear the boundary condition  n · b = 0, hence
contributing to the  Sb  boundary.  The “link”  c  must go from the upper pole (here,
part  Sh

0  of the boundary  Sh) to the lower pole (part  S h
1  of  Sh), whereas the “cut”

C  should separate the two poles, while having its own boundary  ∂C  inside  Sb.
(In the jargon of Fig. 4.6,  c  and  C  are “closed  mod Sh  [resp.  mod S b] and
non-bounding”.)

Denoting by  D  the domain thus defined, and by  S  its boundary, with
Sh  the “magnetic boundary” and  Sb  the part of  S  at the top of the cavity
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1We could reduce further to an eighth, by taking into account the invariance with
respect to a 90° rotation around the  z-axis.  But the symmetry group thus obtained is not
Abelian, a feature which considerably complicates the exploitation of symmetry.  Cf. Refs. [B1,
B2] of Appendix A.

(cf. Fig. 2.6) and in symmetry planes, we must have:
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(1)  rot h = 0   in  D,                                (3)           div b = 0   in  D,

(2) n × h = 0   on  Sh                                (4)           n · b = 0   on  Sb,

(5)                                 b = µ h     in  D.

The problem is made well-posed by imposing one of the two conditions

(6) ∫c τ · h = I,                                           (7)            ∫C n · b = F,

as we saw2 in 2.4.1.  These equations are the same as (2.20)–(2.26), and
little changed in the former model due to geometrical symmetry, except
for one thing:  The flux  F  in (7) is now the flux through one-quarter of the
device, and the computed reluctance will be relative to a quarter as well.

The layout of Eqs. (1–7) underlines a symmetry of another kind, which
will be our main concern in this chapter:  the symmetry of the magnetostatic
equations w i t h respect to the   b–h  interchange.  This can be made even
more patent by setting the problem as follows:  We look for pairs  {F, I}
for which problem (1–7) has a solution.  By linearity, they all lie on the
characteristic line  I = RF  in the  F–I  plane, and the problem thus consists
in finding  R.  (This remark, though of moderate interest in the present
linear case, is the key to nonlinear generalization [B3].)

6.1  A SYMMETRICAL VARIATIONAL FORMULATION

We shall strive to preserve this symmetry in the search for a variational
formulation.  The functional point of view continues to prevail:  We look
for the solution as (first step) an element of some predefined functional
space that (second step) can be characterized as the minimizer of some
easily interpretable, energy-related quantity.

6.1.1  Spaces of admissible fields

By “the” solution, now, we mean the p a i r  {h, b}.  What are the eligible
fields, a priori?  Both  h  and  b  will certainly belong to  IL2(D), since
magnetic energy is finite.  Moreover,  rot h = 0  and  div b = 0, and if we

2The relative arbitrariness in the choice of  c  and  C  is reminded (cf. Exers. 2.5, 2.6 and
Fig. 4.6).  In precise language, integrals (6) and (7) depend on the homology classes of  c  and
C, mod  Sh  and  mod  Sb, respectively.

had to generalize what we do to cases where a given current density  j



6.1  A SYMMETRICAL VARIATIONAL FORMULATION 165

exists in the cavity,  rot h ≡ j  would be square-integrable, since Joule
dissipation must remain finite.  This points to  IL2

rot(D)  as the space in
which to look for  h.  Symmetrically,  b  will belong to  IL2

div(D).
We can do better, by anticipating a little on the discretization process

yet to come.  Some a priori constraints on the solution are easy to enforce at
the discretized level (those are the “essential” or “Dirichlet-like”
conditions mentioned in 2.4.4), and it pays to take them into account from
the onset in the definition of admissible fields, since this reduces the scope
of the search.  Boundary conditions (3) and (4) are of this kind.  So let us
define (recall we are now using the w e a k  grad,  rot,  div)

IH = {h ∈ IL2
rot(D) :  rot h = 0,  n × h = 0   on  Sh} ,

IB = {b ∈ IL2
div(D) :  div b = 0,  n · b = 0   on  Sb} .

These are closed subspaces of  IL2(D), after Exer. 5.3.  We note that fields
of the form  h = grad ϕ  belong to  IH  if  ϕ  is a potential which assumes
constant values on both parts of the magnetic boundary  Sh  (not necessarily
the same constant on each), and we recycle the symbol  Φ  to denote the
space of such potentials:

Φ = {ϕ ∈ L2
grad(D) :  n × grad ϕ  = 0   on  Sh} .

(It’s not exactly the same as the earlier  Φ, beware:  ϕ  is a constant on  Sh
0,

but not necessarily the constant 0.)  Similarly, on the side of  b, let’s introduce

A = {a ∈ IL2
rot(D) :  n · rot a = 0   on  Sb} ,

and remark that fields of the form  b = rot a, with  a ∈ A, belong to  IB.
Moreover, if  D  is contractible (no loops, no holes3 ) then, by the Poincaré
lemma (understood in its extended version of 5.1.4),

(8) IH = grad Φ,                           IB = rot A,

instead of mere inclusions.
Conditions (6) and (7) also can be enforced a priori.  Let’s define linear

functionals  J :  IH → IR  and  F :  IB → IR  as follows.  First, if  h  and  b  are
smooth, set

 J(h) = ∫ c τ · h,                        F(b) = ∫ C n · b,

3The reader who suspects that (8) may hold in spite of the existence of loops or holes in
D, for more complex geometries, is right.  Only relative loops and holes (mod  S h  and  S b)  are
harmful.
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Then, let us prove the following:
Proposition 6.1.   J  and  F  have extensions, continuous  with respect to the
metric of  IL2(D), t o  IH  and  IB.
Proof.  Let  ϕ1  be a smooth function assuming the values  0  on  Sh

0  and  1  on
Sh

1.  For  b ∈ IB, then,  ∫D b · grad ϕ1 = ∫S n · b  ϕ1 = ∫Sh
1
 n · b = F(b), as we saw

with Exer. 2.6, and the map  b → ∫D b · grad ϕ1, which  is  IL2-continuous, is
thus the announced extension.  The proof for  J  is a bit more involved.
(Doing now Exercise 6.6 on p. 187, as preparation, may help.)  Pick a smooth
vector field  a1  such that  n · rot a1 = 0  on  Sb  and  ∫C n · rot a1 = 1.  For  h ≡
grad ϕ ∈ IH, then,  ∫D h · rot a1 = – ∫S n × h · a1 = – ∫S n × grad ϕ · a1 =
∫S n × a1 · grad ϕ = – ∫S div(n × a1) ϕ = – ∫S n · rot a 1 ϕ = – ∫Sh n · rot a 1 ϕ =
J (h) ∫C n · rot a 1 = J (h) .  Again, the continuity of  h → ∫D h · rot a 1  proves
the point.  From now on, we let  J  and  F  denote the extended continuous
functionals.  ◊
Remark 6.1.   Integrals such as  J  and  F  stand no chance of being  IL2(D)-
continuous if one tries to enlarge their domains beyond  IH  and  IB.  The
conditions  rot h = 0  and  div b = 0  are necessary.  ◊

As a corollary, subspaces

 IHI = {h ∈ IH :  ∫ c τ · h = I},      IBF = {b ∈ IB :  ∫ C n · b = F},

are closed.  By (8), we have  IHI = grad Φ I   and  IBF = rot AF, where  ΦI  =
{ϕ ∈ Φ :  ∫ c τ · grad ϕ = I}   and  AF = {a ∈ A :  ∫ C n · rot a = F}, the  pre-images
of  IHI  and  IBF.

Note these are not vector subspaces, but a f f ine subspaces of  IH,  IB, etc.,
unless  I = 0  or  F = 0.  We consistently denote by  IH0,  IB0,  Φ0,  A0  the
subspaces that would be obtained in the latter case.  IHI  is p a r a l l e l, the
usual way, to  IH0, and so forth.  The following lemma will be important:
Lemma 6.1.  Spaces  IH0  and  IB  a r e orthogonal in  IL2(D), i.e.,  ∫ D h · b = 0  i f
h ∈ IH0  and  b ∈ IB.  Similar ly,  IH  and  IB0  are orthogonal.

Proof.  Let  h ∈ IH  and  b ∈ IB.  Then  h = ∇ϕ.  Let  ϕ0  and  ϕ1  be the values of
ϕ  on both parts of  Sh.  One has  ∫ D h · b  = ∫ D b · ∇ϕ = – ∫ D ϕ  div b + ∫ S ϕ  n · b
= ∫ S h ϕ  n · b  after (4), and this is equal to  (ϕ 1 – ϕ 0) ∫ S h n · b, that is, to the
product  (∫c τ · h)(∫C n · b).  Now if  h ∈ IH0, or  b ∈ IB0, one of the factors
vanishes.  ◊
Remark 6.2.  There is more, actually:  With the simple topology we have
here, both pairs are ortho-complements in  IL2(D), which amounts to saying
that any square-integrable field  u  can be written as  u = h + b, with
h ∈ IH0  and  b ∈ IB, or with  h ∈ IH  and  b ∈ IB0, i.e., as the sum of a curl-free
field and a solenoidal field.  These are Helmholtz decompositions.  We
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won’t need a thorough treatment of them, but the paradigm is important,
and will recur.  ◊

The present state of affairs is summarized by Fig. 6.2, in which one
may recognize a part of the front of Maxwell’s building of Fig. 5.1.  Note
how all "vertical” relations have been taken care of, in advance, by the
very choice of functional spaces.  Only the “horizontal” condition (5), which
expresses the constitutive laws of materials inside  D, remains to be dealt
with.
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FIGURE 6.2.  Structure of the magnetostatics problem.  (This is a “Tonti diagram”
[To].  Similar graphic conventions have been independently proposed by many
researchers, Roth in particular [Rt].  See [Bw] for some history.)

6.1.2  Variational characterization of the solution

The following result will make the horizontal connection.
Proposition 6.2.  The problem which consists in finding  h ∈ IHI  and  b ∈ IBF

such that

(9) ∫ D µ− 1 |b − µ h|2 ≤ ∫ D µ− 1
 |b' − µ h'|2   ∀ h' ∈ IHI,   ∀  b' ∈ IBF,

has a unique solution, which is the solution of  (1–7) when the latter exists.

Proof.  The proof of Lemma 6.1 shows that  ∫ D h' · b' = I  F.  Therefore,

(10) ∫ D µ− 1 |b' − µ h'|2 = ∫ D µ− 1 |b'|2 + ∫ D µ |h'|2 −  2  I  F

for all pairs  {h', b'} ∈ IHI × IBF.  This means that problem (9) splits in two
independent minimization problems:

(11)   f ind  h ∈ IHI  such that  ∫ D µ |h|2  is minimum
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and

(12)  find  b ∈ IBF  such that  ∫ D µ− 1 |b|2  is minimum.

Both problems have a unique solution by the Hilbertian projection theorem
(because  IHI  and  IBF are closed convex sets).  The minima are necessarily of
the form  S  I

2  and  R F
2, where  R  and  S  are positive constants.  Then (10)

shows that

∫ D µ− 1 |b − µ h|2 = R F
2 + S I

2 – 2 I  F ≥ 0

whatever  F  and  I.  If (1–7) has a solution for a nontrivial pair  {I, F}, the
left-hand side vanishes, which implies  RS = 1  (look at the discriminant),
I = RF, and  b = µh.  We call  R  the reluctance of  D  under the prevailing
boundary conditions.  ◊

We note that, for a given nonzero  F, there is always a value of  I  such
that the left-hand side of (9) vanishes, namely  I = RF, so this proves the
existence in (1–7) for the right value of  I/F.  However, the point of Prop.
6.2 is not to prove again the existence of a solution to the magnetostatics
problem, but to introduce a new variational characterization of it.  The
quantity at the right-hand side of (9) is an “error in constitutive law” as
regards the pair  {h', b'}.  Thus, compliance with such a law amounts to
looking for a couple of fields that minimize the discrepancy, among those
that satisfy all other required conditions.  This old and esthetically
attractive idea, which generalizes to monotone nonlinear constitutive laws,
thanks to the theory of convex functions in duality [Fe, Ro], seems to date
back to Moreau [Mo, Ny], and has been increasingly popular ever since
(and rediscovered), in the “computational magnetics” community [R §] and
others [OR, LL].  It works for time-dependent problems just as well
[B2, A &].

There are several equivalent ways to formulate problems (11) and (12).
One consists of writing the associated Euler equations, or weak formulations:

(13) f ind  h ∈ IHI  such that  ∫ D µ  h · h' = 0   ∀  h' ∈ IH0,

(14) f ind  b ∈ IBF  such that  ∫ D µ− 1 b · b' = 0   ∀  b' ∈ IB0.

Another consists of using potentials, thanks to (8):

(15)   f ind  ϕ ∈ Φ  I  minimizing  ∫ D µ |grad ϕ |2,

(16)   f ind  a ∈ AF  minimizing  ∫ D µ− 1 |rot a|2.
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Now, of course, neither  ϕ  nor  a  need be unique.  Equivalent weak
formulations are

(17) f ind  ϕ ∈ Φ  I  such that  ∫D µ grad ϕ · grad ϕ ' = 0   ∀ ϕ ' ∈ Φ 0,

(18) f ind  a ∈ AF  such that    ∫D µ− 1 rot a · rot a' = 0    ∀ a' ∈ A0.

Dualizing the constraints  (6) and (7), as in Exer. 2.9, is also an option,
which leads to

(11')   f ind  h ∈ IH  such that  ∫D µ |h|2 – 2 F J(h)  is minimum,

(12')  find  b ∈ IB  such that  ∫D µ− 1 |b|2 – 2 I F(b)  is minimum,

with again associated Euler equations and equivalent formulations with
potentials  ϕ ∈ Φ  and  a ∈ A, similar to (15)–(18).

6.1.3  Complementarity, hypercircle

At this stage, we have recovered the variational formulation in  ϕ, Eq.
(15), and derived the other one, on the “curl side”, in a strictly symmetrical
way.  This is an encouragement to proceed in a similarly parallel fashion
at the discrete level.

So let  Φm  be the subspace of mesh-wise affine functions in  Φ  (recall
they are constant over both parts of  S h).  Likewise, let’s have  ΦI

m  and
Φ0

m  as Galerkin subspaces for  Φ I  and  Φ0  (with, again, the now-standard
caveat about variational crimes and polyhedral domains).  As in Chapter
3, we replace Problem (15) by the approximation

(19)   find  ϕm ∈ Φ I
m  minimizing  ∫D µ |grad ϕ |2,

which is equivalent to

(20) find  ϕm ∈ Φ I
m  such that  ∫D µ  grad ϕm · grad ϕ ' = 0   ∀ ϕ' ∈ Φ0.

There is a tiny difference in the present treatment, however:  Observe
that the solution is not unique!  An additive constant has yet to be chosen,
which can be achieved by, for instance, imposing  ϕϕϕϕ n = 0  for those nodes  n
that lie in  Sh

0, and this is most often done, without even thinking about it.
So did we in Chapter 3.  But this time, I do want to call attention on this
“gauge-fixing” procedure, trivial as it is in this case.

Since the minimization in (19) is performed on a smaller space than in
(17), the minimum achieved is an upper estimate of the true one:  I2/Rm
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instead of  I
2/R, with  I 2/Rm ≥ I2/R, hence  Rm ≤ R.  Solving (19) or (20) thus

yields a lower bound for the reluctance.
Now, it would be nice to have an upper bound as well!  If we could

perform the same kind of Galerkin approximation on the “vector potential”
version of the problem, (16) or (18), we would indeed have one:  For if  AF

m
is some finite dimensional subspace of  AF, solving either the quadratic
optimization problem,

(21)   f ind  am ∈ AF
m  minimizing  ∫ D µ− 1 |rot a|2,

in terms of still to be defined degrees of freedom, or the associated linear
system,

(22) f ind  am ∈ AF
m  such that  ∫ D µ− 1 rot am · rot a' = 0   ∀ a' ∈ A0

m ,

will yield an upper bound  Rm F2  to  RF2.  Hence the bilateral estimate

(23) Rm ≤ R ≤ Rm ,

obviously a very desirable outcome.  This is complementarity, as usually
referred to in the literature [Fr, HP, PF].

There is more to it.  Suppose one has solved both problems (19) and
(21), and let us set

E(bm, hm) = ∫ D µ− 1 |bm − µ hm|2 ≡ ∫ D µ− 1 |rot am − µ grad ϕm|2.

Be well aware that  I  and  F  are unrelated, a priori (we’ll return to this
later), so even for the exact solutions  h  and  b  of (11) and (12), the error in
constitutive law  E(b, h)  does not vanish.  Thus  E(bm, hm), obtained by
minimizing on finite dimensional subspaces, will be even larger.  Now,
Proposition 6.3.  One has

E(bm, hm) = ∫ D µ− 1 |bm − b + b – µ h + µ(h – hm)|2

(24)                 = ∫ D µ− 1 |bm − b|2 + ∫ D µ− 1 |b – µ h|2 + ∫ D µ|h – hm|2,

Proof.  Develop the first line and observe that all rectangle terms vanish,
because of a priori orthogonality relations which Fig. 6.3 should help
visualize.  Indeed,  bm − b  and  hm − h  belong to  rot A0 ≡ IB0  and  grad Φ0  ≡
IH0, which are orthogonal by Lemma 6.1.  This disposes of the term
∫ D µ− 1  (bm − b) · (µ (h – hm)) .  As for  ∫ D µ− 1 (b – µ h) · (µ (h – hm), this is
equal to  ∫ D  (b – µ h) · grad ψ  for some  ψ ∈ Φ0, which vanishes because
both  b  and  µh  are solenoidal.  Same kind of argument for  the third term
∫ D (bm − b) · (µ− 1 b –  h ), because  rot h = 0  and  rot(µ–1 b) = 0.  ◊
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FIGURE 6.3.  The geometry of complementarity.  All right angles in sight, marked by
carets, do correspond to orthogonality properties, in the sense of the scalar product
of  IL2(D), which result from Lemma 6.1 and from variational characterizations.
(All  IBFs  [resp.  all  IHIs] are orthogonal to  IH  [resp. to  IB].)  Note how  h, hm , b,
bm ,  all stand at the same distance  rm  from  C m = (hm + bm)/2, on a common
“hypercircle”, and how the equality (24) can be read off the picture.  For readability,
this is drawn as if one had  µ = 1, but all geometric relations stay valid if all symbols
h  and  IH  [resp.  b  and  IB] are replaced by  µ1/2 h  and  µ1/2 IH  [resp.  by  µ– 1/2 b
and  µ– 1/2 IB].

Since  E(bm, hm) =  ∫  D µ− 1 |bm − µ hm|2 ≡ ∑  T ∈ T ∫ T µ− 1
 |bm − µ hm|2  is a

readily computable quantity, (24) stops the gap we had to deplore in
Chapter 4:  At last, we have a posteriori bounds on the approximation
errors4 for both  hm  and  bm, which appear in first and third position at
the right-hand side of (24).  All it requires is to solve for bo th potentials
ϕ  and  a, by some Galerkin method.  Of course, the smaller the middle
term  E(b, h), the sharper the bounds, so  I  and  F  should not be taken at
random.  For efficiency, one may set  I, get  ϕm, evaluate the flux  F  by the
methods of Chapter 4 (cf. Subsection 4.1.3, especially Fig. 4.7), and finally,
compute  am  for t h i s value of the flux.
Exercise 6.1.   Show that this procedure is actually optimal, giving the

4Global bounds, not local:  It is not necessarily true that  E T(bm , h m ), that is,
∫ T µ− 1

 |bm − µ h m|2, is an upper bound for  ∫ T µ− 1
 |b – b m|2  and  ∫ T µ |h – h m|2.  Still, it’s

obviously a good idea to look for tetrahedra  T  with relatively high  E T, and to refine the mesh
at such locations.  Cf. Appendix C.

sharpest bound for a given  I.
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Remark 6.3.  As Fig. 6.3 suggests, the radius  rm  of the hypercircle is given
by  [E(bm, hm)]1/2/2.  This information allows one to get bilateral bounds on
other quantities than the reluctance.  Suppose some quantity of interest is
a linear continuous functional of (say)  h,  L(h).  There is a Riesz vector
h L  for this functional (cf. A.4.3), such that  L(h) = ∫D µ hL · h.  What
is output is  L(hm).  But one has  |L(h) – L(hm)| = |∫D µ hL · (h – hm)| ≤
||h L||µ ||h – hm||µ ≤ rm ||h L||µ, hence the bounds.  There is a way to express the
value of the potential at a point  x  as such a functional [Gr].  Hence the
possibility of pointwise bilateral estimates for the magnetic potentials.
This was known long ago (see bibliographical comments at the end), but
seems rarely applied nowadays, and some revival of the subject would
perhaps lead to interesting applications.  ◊

6.1.4  Constrained linear systems

With such incentives, it becomes almost mandatory to implement the vector
potential method.  All it takes is some Galerkin space  A F

m , and since the
unknown  a  is vector-valued, whereas  ϕ  was scalar-valued, let’s pretend
we don’t know about edge elements and try this:  Assign a vector-valued
DoF  an  to each node, and look for the vector field  a  as a linear combination

a = ∑ n ∈ N  an wn.

(We shall have to refer to the space spanned by such fields later, so let us
name it  IP1

m , on the model of the  P1  of Chapter 3, the “blackboard” style
reminding us that each DoF is a vector.)  Now (21) is a quadratic
optimization problem in terms of the Cartesian components of the vector
DoFs.  The difficulty is, these degrees of freedom are not independent,
because  a  must belong to  AF

m .  As such, it should first satisfy  n · rot a = 0
on  Sb, that is, on each face  f  of the mesh that belongs to  Sb.  Assume
again flat faces, for simplicity, and let  nf  be the normal to  f.  Remembering
that  N(f)  denotes the subset of nodes that belong to  f, we have, on face  f,

n · rot a = ∑ ν ∈ N(f)   nf · rot(a ν  wν) = ∑ ν ∈ N(f) nf · (∇ wν  × a ν)

                         ≡  ∑ ν ∈ N(f)  (nf × ∇wν) · a ν ,

since  n × ∇wν  vanishes for all other nodes  ν   (Fig. 6.4), hence the linear
constraints to be verified by the DoFs:

∑ ν ∈ N(f)  (nf × ∇wν) · a ν  = 0
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for each face  f  in  Sb.  The condition on the flux,  ∫C n · rot a = F, will also
yield such a constraint.  Taken all together, these constraints can be
expressed as  L a  = F k, where  L  is some rectangular matrix and  k  a fixed
vector.  (We shall be more explicit later about  L   and  k.  Just note that
entries of  L  are not especially simple, not integers at any rate, and frame-
dependent.)

ν

∇ νw

n
S

FIGURE 6.4.  All surface fields  n × ∇wν  vanish, except when node  ν  belongs to
the boundary.

 To sum up:  The quadratic optimization problem (21) is more complex
than it would appear.  Sure, the quantity to be minimized is a quadratic
form in terms of the vector  a   of DoFs (beware, this is a vector of dimension
3N, if there are  N  nodes):

∫ D µ− 1 |rot a|2 = (M a , a ),

if we denote by  M  the associated symmetric matrix.  But  (M a , a )  should
be minimized under the constraint  L a  = F k, so the components of  a  are
not independent unknowns.

Problems of this kind, that we may dub constrained linear systems,
happen all the time in numerical modelling, and there are essentially
two methods to deal with them.  Both succeed in removing the constraints,
but one does so by increasing the number of unknowns, the other one by
decreasing it.

The first method5 consists in introducing Lagrange multipliers:
minimize the Lagrangian  (M a , a ) + 2(λλλλ, L a )  with respect to  a ,  without
constraints, and adjust the vector of multipliers  λλλλ  in order to enforce  L a  =
F

 
k.  This amounts to solving the following augmented linear system, in

5Often referred to as the “dualization of constraints”, a systematic application of the
trick we encountered earlier in Exer. 2.9.

block form:
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   M       Lt      a                 0
(25)                               = F            .

   L         0       λλλλ                k

This is what is called, according to a rather dubious but already entrenched
terminology, a mixed system .  It’s a standard (unconstrained) symmetric
linear system, but deprived of properties such as positive definiteness, so
solving (25) is a challenge for which classical matrix analysis did not
prepare us.  See Appendix B for a few directions.
Exercise 6.2.  What is the physical interpretation of the components
of  λλλλ ?

The second method consists in expressing all unknowns in terms of a
well-chosen set of independent variables.  These may or may not coincide
with a subset of the original unknowns.  Most often they do, and picking
the independent ones is so easy and so natural that one is not even aware
of doing it.  This is the case with Problem (19) or (20) above.  Set in terms
of  ϕϕϕϕ, (19) is actually a constrained linear system, the constraints on  ϕϕϕϕ
being as follows:  (1) all  ϕϕϕϕn  for  n  in  Sh

0  equal to some constant, (2) all
those for  n  in  Sh

1  equal to some other constant, and (3) the difference
between these constants being equal to  I.  This can be compactly written as
Lϕϕϕϕ  = I  k, just as before (with, of course, a different  L  and a different  k) ,
and one could imagine using Lagrange multipliers.  But it’s much easier to
set  ϕϕϕϕn = 0  for all  n  in  Sh

0  (one will recognize the previous “gauge fixing”
in action there),  ϕϕϕϕn = I  for all  n  in  Sh

1, and to solve with respect to other,
obviously independent, nodal DoFs.  So this is an example of a constrained
linear system for which the sifting of dependent variables is
straightforward.

Unfortunately, such is not the case with (21) or (22).  The only recourse
is to extract from  L  a submatrix of maximum rank (there do exist algorithms
for this purpose [AE]), and thus to select independent variables to solve
for.  But this is a costly process.  So the vector potential approach to
magnetostatics looks unappealing, a priori.

6.2  SOLVING THE MAGNETOSTATICS PROBLEM

Should we then renounce the benefits of complementarity?  No, thanks to
edge elements.
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6.2.1  Embedding the problem in Maxwell–Whitney’s house

In fact, after Chapter 5, it’s hard not to think of edge elements in the
present context.  We know, by Fig. 6.2, how the present problem fits within
Maxwell’s “continuous” building, so all we have to do is embed it in the
relevant part of the Maxwell–Whitney “discrete” building.  To make this
formal, let us introduce a few definitions:  Just as  ΦI

m  above is the
intersection  W0

m ∩ ΦI, let us set  IHI
m = W1

m ∩ IHI, as well as  IBF
m =

W2
m ∩ IBF  and—now committing ourselves to a definite approximation

space— AF
m = W 1

m ∩ AF.  This is a sensible move, since elements of  IHI
m

and  IBF
m  have the kind of continuity required from  h  and  b  respectively,

and the representations by potentials work nicely:  indeed,  grad ΦI
m = IHI

m
and  rot AF

m = IBF
m .

 Any pair  {h, b}  taken in  IHI
m × IBF

m  will thus satisfy all equations
(1–7) except  b = µ h, the constitutive law.  The latter cannot hold, since
W1

m  and  W 2
m  are different spaces (and by the no-free-lunch principle we

had to apply once already:  all equations cannot exactly be satisfied when
we discretize).  Hence the question mark in the center of Fig. 6.5.
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FIGURE 6.5.  Two copies of the top sequence of (5.13), put vertically, one downwards,
one upwards, and appropriately clipped, form a framework in which Fig. 6.2 can
be embedded, except for the horizontal relation, which must be relaxed.

 So we settle for the next best thing, which is to minimize the error in
constitutive law:  f ind  hm ∈ IHI

m  and  bm ∈ IBF
m  such that

∫ D µ− 1 |bm − µ hm|2 ≤ ∫ D µ− 1 |b' − µ h'|2   ∀ h' ∈ IHI
m,   ∀ b' ∈ IBF,

and for exactly the same reasons as in Prop. 6.2, this splits into a pair of
independent problems:
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(26)   f ind  hm ∈ IHI
m  minimizing  ∫ D µ

 
|h|2,

(27)  f ind  bm ∈ IBF
m  minimizing  ∫ D µ− 1 |b|2.

To investigate the algebraic nature of these problems, let us express
them in terms of degrees of freedom.  (Recall the generic notation  E( . . . )
or  F( . . . )  for the sets of edges or faces that belong to some region of space
or to some geometric element (surface, line . . .) whose name stands inside
the parentheses.)  We assume the link  c  and the cut  C  of Fig. 6.1 are
unions of edges and faces of the mesh.  By analogy with the incidence
numbers  Rf e , let us have  Rc e = ± 1  if edge  e  belongs to  c, the sign being
plus if their orientations match, and  Rc e = 0  otherwise.  Similarly, let
DC f  = ± 1  if face  f  belongs to  C, with the same sign convention, and  0
otherwise.  We may now define

H I = {h  ∈ W 1 :  h e = 0  ∀ e ∈ E( Sh),  ∑ e ∈ E (c) Rc e h e = I},

BF = {b ∈ W 2 :  bf = 0  ∀ f ∈ F( Sb),  ∑ f ∈ F (C) DC f bf = F},

and using the mass matrices of Chapter 5, problems (26) and (27) are
equivalent to

(28) f ind  h  ∈ H I  such that  (M1(µ) h , h )  is minimum,

(29) f ind  b ∈ BF  such that  (M2(µ –1) b, b)  is minimum,

two “constrained linear systems”, according to the foregoing terminology.
Solving both will give the bilateral estimate (23) of the reluctance.

As constrained linear systems, problems (28) and (29) can be attacked
by both general strategies:  (1) introduce Lagrange multipliers, hence the
so-called “mixed” formulations (and though not very popular, some of them
have been tried;  see, e.g., [PT]), or (2) select independent variables.  For
this second strategy, there are again two variants.  Independent variables
can just be picked among the original ones, and this is what spanning tree
extraction techniques permit (cf. Fig. 6.6), hence numerical methods in terms
of  h  and  b  directly.  Both have been considered [Ke].  (The one in  b
seems less robust [Ke], and it would be worthwhile to understand why.)
The second variant corresponds to the introduction of potentials:  node or
edge variables that help represent the above  h  and  b, while automatically
taking constraints into account.

Thus treated, (26) and (27) become

(30)  f ind  ϕm ∈ Φ I
m  such that  ∫ D µ |grad ϕ|2  is minimum,
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(31)  f ind  am ∈ AF
m  such that  ∫ D µ− 1 |rot a|2  is minimum,

and in terms of degrees of freedom,

(32) f ind  ϕϕϕϕ ∈ ΦΦΦΦ I  such that  (M1(µ ) Gϕϕϕϕ , Gϕϕϕϕ )  is minimum,

(33) f ind  a  ∈ AF  such that  (M2(µ –1) Ra, Ra)  is minimum,

where  ΦΦΦΦI = {ϕϕϕϕ ∈ W 0 :  Lϕϕϕϕ  = I k}  has already been described, for system (32)
is nothing else than the scalar potential method of Chapter 3.  The novelty
is (33), which realizes (at last!) the discretization “on the curl side” of
Eqs. (2.20) to (2.26).

S
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b

h
S 0

S h
1

D

FIGURE 6.6.  Tree of edges for the model problem in dimension 2.  (This is actually a
“belted tree mod S h “ in the language of Section 5.3.)  Note how all edge circulations
of  h  are determined by those of the tree edges (in thick lines), thanks to  rot h = 0
(cf. Fig. 5.5) and  n × h = 0  on  Sh.

 So let us look at  AF, or equivalently, at the associated space of fields,
AF

m.  Elements of the latter are subject to the conditions  n · rot a = 0  over
each face  f  in  Sb  and  ∫ C n · rot a = F.  Since  rot a  is mesh-wise constant,
n · rot a = 0  over  f  results in one relation between the  a es, namely
∑ e ∈ E R f e a e = 0, which involves only the DoFs of the three edges that
bound  f  (the trick of Fig. 5.5, again).  The condition on the flux through  C
results in a similar relation:  ∑ e ∈ E (∂C) R∂C e a e = F, where  R∂C e = ± 1,
depending on the orientation of edge  e  relative to  ∂C.  Taken all together,
the constraints can thus be expressed as  L a  = F

 
k, just as in the case of

nodal vectorial elements, but  L  is now much simpler, with entries  ± 1 or  0
that are obtained by simply looking at how edges are oriented.  This is a
considerable improvement.

Still, these constraints are in the way, and whether we can get rid of
them simply is the litmus test that will, if passed, establish the superiority
of edge elements in the vector potential approach.
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6.2.2  Dealing with the constraints

Indeed, the constraints can be removed by the following method.  First
construct a special DoF vector  aF, such that the associated field  aF =
∑ e ∈ E aF

e we  belong to  AF.  This will be done in the next paragraph.  Then,
instead of minimizing over all  A F

m , we shall do it over fields of the form
aF + ∑ a e we, where the index  e  spans  E – E ( Sb), i.e., without any restriction
on the  a es, but excluding edges of  Sb.  Edge DoFs in this summation are now
independent.  The final version of the problem will thus be:  f ind  a  ∈ ÃF

such that   (M2(µ –1 ) Ra, Ra)  be minimum, where  ÃF  is the subset
{a  ∈ W 1 :  a e = aF

e  ∀  e ∈ E( Sb)} , which amounts to solving a linear system
with respect to the DoFs of the “inner edges” (those not in  Sb) .
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FIGURE 6.7.  One step in the construction of  aF :  assigning scalar values to nodes
on the boundary  Sb, after having doubled the nodes on the “cut”  c.

The construction of  aF  proceeds as follows (Fig. 6.7).  Consider the
mesh of surface  Sb, as induced by  m.  Make a (one-dimensional) “cut”  c  by
following a path of edges from top to bottom.  Double the nodes along  c.
Assign scalar values  vn  to nodes, arbitrary values, except for the pairs of
nodes along  c, that should receive zeroes and ones, on the pattern suggested
by Fig. 6.7.  Then, assign to all edges  e = {m, n}  the value  aF

e = (vn – vm)F
if  e ∈ E (Sb) ,  aF

e = 0  otherwise.  The recipe works because, whatever  a =
∑{e ∈ E :  a e we}  in  AF

m , there is a modified field  ã = ∑ e ∈ E  ã e we, where
ã e = aF

e  if  e ∉ E( Sb)  and  ã e = a e  otherwise (hence  ã  ∈ Ã), that has the
same curl as  a  (this is the point of the above construction).  Thus, one
minimizes in (31) over a space  ÃF

m  strictly smaller than  AF
m , but with

rot AF
m = rot ÃF

m  (≡ IBF
m ), so the same  b  is reached.

Remark 6.4.  As the kernel  ker(R ;  Ã) = {a  ∈ Ã :  Ra = 0}  does not reduce to
0, this final version of the vector potential approach does not give a unique
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a, although a unique  b  is obtained.  The associated linear system is therefore
singular.  We shall return to this apparent difficulty.  ◊

6.2.3  “mmmm -weak” properties

We should now proceed as in Section 4.1, and answer questions about the
quality of the approximation provided by  am :  We are satisfied that  bm
= rot am  is solenoidal and that  n · bm = 0  on the  Sb  boundary, but what is
left of the “weak irrotationality” of  hm = µ–1 bm ?  And so forth.
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e

FIGURE 6.8.  “m-weak” properties of the vector potential solution.  Left:  The
circulation of  h m = µ–´1 rot a m  is zero along the circuit  γ  that joins barycenters
around any inner edge  e = {m, n}.  Middle:  If  e  belongs to  S h, the circulation is
null along the open path  γ.  Right:  The “variationally correct” mmf is obtained by
taking the circulation of the computed  h m  along the “m*-line” σ  joining  Sh

0  and
Sh

1, or along any homologous  m*-line  σ’.

It would be tedious to go through all this again, however, and there is
more fun in guessing the results, thanks to the analogies that Tonti’s
diagrams so strongly suggest.  So we can expect with confidence the following
statements to be true:

•  For any DoF vector  a , the term  (RtM2(µ –1) Ra)e ≡ ∫D h · rot we, where
h = µ–1 rot(∑  e ∈ E a e we) , is the circulation of  h  along the smallest closed
m*-line (closed  mod S, in the case of surface edges) that surrounds edge  e
(cf. Fig. 6.8).

•  The circulation of the computed field,  hm, vanishes along all  m*-lines
which bound modulo  Sh  (cf. Fig. 4.6, right).

•  The circulation of  hm  is equal to  I  along all  m*-paths similar to  σ
(or its homologue  σ') on Fig. 6.8.
Exercise 6.3.  Prove all this.
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There is more to say about complementarity.  In particular, there is an
obvious problem of duplication of efforts:  Computations of  ϕ  and  a  are
independent, though their results are closely related.  No use is made of
the knowledge of  ϕ  when solving for  a, which seems like a waste, since
as one rightly suspects, and as the following discussion will make clear,
solving for  a  is much more expensive than solving for  ϕ.  There is a way
to save on this effort, which is explained in detail in Appendix C.  We
now address the more urgent question of whether edge elements are really
mandatory in the vector potential approach.

6.3  WHY NOT STANDARD ELEMENTS ?

As we saw, edge elements are able to solve a problem that was quite difficult
with nodal vectorial elements, namely, to obtain a vector potential
formulation in terms of explicit independent degrees of freedom.  This is a
good point, but not the whole issue, for difficult does not mean impossible,
and if bilateral estimates, or any other consequence of the hypercircle
trick, are the objective, one must concede that it can be achieved with
standard nodal elements, scalar-valued for  ϕ, vector-valued for  a.  All
that is required is approximation “from inside” (within the functional
space), Galerkin style.  It’s thus a gain in simplicity or in accuracy, or
both, that we may expect of edge elements.

To make a fair comparison, let us suppose that, after proper selection
of independent variables, the vector potential approach with nodal
elements consists in looking for  a  in some subspace of  IP1

m 
, that we shall

denote   ÃF
m(IP1).  Let us similarly rename  ÃF

m( W1)  the above  ÃF
m , to

stress its relationship with edge elements.  In both methods, the quantity
∫D µ–1

 |rot a|2  is minimized, but on different subspaces of  IL2
rot(D), which

results in linear systems of the same form  Ma = b, but with different  M
and  b, and a different interpretation for the components of  a .  Let us call
M P  and  M W, respectively, the matrix  M  in the case of the  IP1  and the
W1  approximation.  Both are symmetric and (a priori) nonnegative definite.
We shall find the nodal vectorial approach inferior on several counts.
But first . . .

6.3.1  An apparent advantage:  M P  is regular

Indeed, let  a ∈ ÃF
m (IP1)  be such that  rot a = 0, which is equivalent to  Ma

= 0.  Then  a = grad ψ.  Since  a  is piecewise linear with respect to the
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mesh  m  and continuous (in all its three scalar components),  ϕ  is piecewise
quadratic and differentiable, two hardly compatible conditions.  The space
P2  of piecewise quadratic functions on  m  is generated by the products
wn wm , where  n  and  m  span the nodal set  N.  Therefore,  grad ψ =
∑ m, n ∈ N αm n grad(wm wn) , and since the products  wn wm  are not differentiable,
the normal component of this field has a nonzero jump across all faces.
(This jump is affine with respect to coordinates over a face.)  Demanding
that all these jumps be  0  is a condition that considerably constrains the
α’s  (in practice, only globally quadratic  ψ, as opposed to mesh-wise
quadratic, will comply).  Consequently, the kernel of  rot  in  Ã F

m(IP1)  will
be of very low dimension, and as a rule reduced to  0, because of additional
constraints imposed by the boundary conditions.  So unless the mesh is
very special, one may expect a regular  M P , whereas the matrix  M W  is
singular, since  W1  contains gradients (cf. Prop. 5.4, asserting that
W1 ⊃ grad W0) .

Good news?  We’ll see.  Let us now look at the weak points of the
nodal vectorial method.

6.3.2  Accuracy is downgraded

When working with the same mesh, accuracy is downgraded with nodal
elements, because  rot(ÃF

m(IP1)) ⊂ rot(ÃF
m( W1)), with as a rule a strict

inclusion.  Minimizing over a smaller space will thus yield a less accurate
upper bound in the case of nodal elements, for a given mesh  m

 
.  (Let’s omit

the subscript  m  for what follows, as far as possible.  Recall that  N, E, F,
T  refer to the number of nodes, etc., in the mesh.)

The inclusion results from this:
Proposition 6.4.  For a given mesh   m , any field   u ∈ IP1  is sum of some field
in  W1  and of the gradient of some piecewise quadratic function, i.e.,

IP1 ⊂ W1 + grad P2.

Proof.  Given  u ∈ IP1, set  ue = ∫e τ · u, for all  e ∈ E , and let  v = ∑ e ∈ E ue we  be
the field in  W1  which has these circulations as edge DoFs.  Then, both  u
and  v  being linear with respect to coordinates,  rot(u − v)  is piecewise
constant.  But its fluxes through faces are  0, by construction (again, see
Fig. 5.5), so it vanishes.  Hence  u = v + ∇ϕ, where  ϕ  is such that  ∇ϕ  be
piecewise linear, that is,  ϕ ∈ P2.  ◊

As a corollary,  rot IP1 ⊂ rot W1, hence the inclusion, as far as (but this
is what we assumed for fairness)  ÃF

m(IP1) ⊂ AF.  As a rule, this is strict
inclusion, because the dimension of  rot IP1  cannot exceed that of  IP1, which
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is  3N  (three scalar DoFs per node), whereas the dimension of  rot W 1  is
(approximately the same as) that of the quotient  W1/grad(W0), which is
E − N + 1, that is,  5 to 6 N, depending on the mesh, as we know (cf. 4.1.1).
Exercise 6.4.  Check that  IP1  is not contained in  W1.
Exercise 6.5.  Show that  W1 ⊂ IP1 + grad P2  does not hold.

6.3.3  The “effective” conditioning of the final matrix is worsened

The importance of the condition number  of a matrix, that is, the ratio of
its extreme eigenvalues, is well known.  This number determines to a large
extent the speed of convergence of iterative methods of solution, and the
numerical  accuracy of direct methods.

This is true, that is, in the case of regular matrices.  But if a symmetric
nonnegative definite matrix  M  is singular, this does not preclude the use
of iterative methods to solve  Ma = f.  All that is required is that  f  be in
the range of  M, so that  (Ma, a ) – 2 (f, a )  have a finite lower bound.  Then
any “descent” method (i.e., one that tries to minimize this function by
decreasing its value at each iteration) will yield a minimizing sequence
uk  that may not converge, but does converge modulo   ker(M), and this may
be just enough.  To be definite, suppose the matrix  M  is a principal submatrix
of  RtM(µ–1)R, as was shown to be the case with edge elements.  The quadratic
form to be minimized is indeed bounded from below, and the desired
convergence is that of  Rak, not  ak.  By working out the simple example of
the iterative method  un + 1  = un − ρ (Man − f) , which is easy in the basis of
eigenvectors of  M, one will see that what counts, as far as convergence
modulo  ker(M)  is concerned, is the ratio of extreme strictly positive
eigenvalues.  Let us call this e f f ec t ive conditioning, denoted by  κ(M) .

We now show that  κ(M P) >> κ(M W), thus scoring an important point
for edge elements.  This will be quite technical, unfortunately.

Both matrices can be construed as approximations of the “curl–curl”
operator,  rot(µ−1

 rot ), or rather, of the associated boundary-value problem.
Their higher eigenvalues have similar asymptotic behavior, when the
mesh is refined.  (I shall not attempt to prove this, which is difficult,6

but it can easily be checked for meshes with a regular, repetitive layout.)
So we should compare the first positive eigenvalue  λ1(MW)  with its
homologue  λ1(MP).  As we noticed,  MP  is regular, in general.  But zero is
an eigenvalue of the curl–curl operator, and as a rule, spectral elements of

6The difficulty lies in stating the claim with both precision and generality.

an operator are approximated (when the mesh is repeatedly refined while



6.3  WHY NOT STANDARD ELEMENTS? 183

keeping flatness under control, which we informally denote as  “m → 0”)
by those of its discrete matrix counterpart, which does not contain   0.
Therefore, when  m → 0,  λ1(M P)  tends to  0.  But for  M W , the situation is
quite different:  This matrix is singular, since it contains the vectors  a  =
Gψψψψ  (with  ψψψψ n  ≠  0  for all  n  not in  S b).  No need in consequence for the
eigenvalue  0  to be approximated “from the right”, as was the case
for  M P.

And indeed,  limm → 0  λ1(M W ) > 0.  This can be seen by applying the
Rayleigh quotients theory, according to which

    λ1(M W) = inf{(M W a , a ) :  |a| = 1,  ( a, a ') = 0  ∀ a ' ∈ ker(M W)} .

In terms of the associated vector fields, this orthogonality condition means

(34) ∫ D a · grad ψ ' =  0   ∀ ψ ' ∈ Ψ  0 ∩ W0
m ,

where  Ψ  0 = {ψ ∈ L2
grad(D) :  ψ  = 0  on  Sb}.  Let  a1(m )  be the field whose

DoFs form the eigenvector  a 1  corresponding to  λ1, and  a 1  its limit when
m → 0.  Equation (34) holds for  a1.  Therefore (take the projections on  W0

m
of  ψ '  in (34), and pass to the limit),

∫ D a1 · grad ψ ' =  0    ∀ ψ' ∈ Ψ  0,

and  a1  is thus divergence-free.  Hence

          limm → 0 λ1(M W) = inf{∫ D σ−1 | rot a|2 :  a ∈ Ã0,  div a = 0,  ∫ D | a|2 = 1},

and this Rayleigh quotient is strictly positive.
So we may conclude that  κ(MW)/κ(MP)  tends to  0:  Effective condi-

tioning is asymptotically better with edge elements.

6.3.4  Yes, but . . .

Is the case over?  Not yet, because the defendants have still some arguments
to voice.  Ease in setting up boundary conditions?  Yes, but think of all
these standard finite element packages around.  Reusing them will save
much effort.  Bad conditioning?  Yes, but asymptotically so, and we don’t
go to the limit in practice;  we make the best mesh we can, within limits
imposed by computing resources;  this mesh may not be the same for both
methods, since the number of degrees of freedom will be different, so the
comparison may well be of merely academic interest.  Same thing about
the relative loss of accuracy:  Given the same resources, we may use more
refined meshes in the case of nodal elements, since the number of degrees
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of freedom is lower, apparently.  After all, the number of edges  E  is much
higher than  3N, isn’t it?

Let us count again.  Assume the mesh is first done with bricks, each of
these being further divided into five tetrahedra (cf. Exer. 3.7).  Thus,  T ≈
5N.  Then  F ≈ 10  N  (four faces for each tetrahedron, shared by two), and
the Euler–Poincaré formula, that is, as we know,

N – E + F – T = χ(D),

shows that  E ≈ 6N.  So indeed, the number of DoFs in the edge element
method (about  E ≈ 6N) will be twice as high as in the nodal vectorial one
(≈ 3N).

 These figures, which ignore boundary conditions, are quite approximate
(cf. [Ko] for precise counting).  The ratios are valid for big meshes only.
Still, the conclusion is neat:  Tetrahedral edge elements generate more
degrees of freedom than classical elements.

But is that really topical?  The most meaningful number, from the
point of view of data storage and CPU time, is not the size of the matrix,
but the number of its nonzero entries.  It happens this number is smaller,
for a given mesh, for  M W  than for  M P , against pessimistic expectations.

For let us count the average number of entries on a given row of  MP:
This equals the number of DoFs that may interact with a given nodal one,
that is, if we denote by  vi  the basis vectors in a Cartesian frame, the
number of couples  {m, j}  for which  ∫ D µ−1 rot (v i wn) · rot (vj wm) ≠  0, for a
given  {n, i}.  But  rot (vi wn) = −   vi × grad wn, so this term vanishes if the
supports of  w n  and  wm  don’t intersect, so two DoFs may interact only
when they belong to the same node, or to nodes linked by an edge.  As each
node is linked with about  12  neighbors, there are  38  extra-diagonal
non-vanishing terms on a row of  MP, on average.

As for  MW, the number of extra-diagonal
non-vanishing terms on the row of edge  e
is the number of edges  e'  for which the
integral  ∫ D µ−1 rot we · rot we'  differs from
0, that is, edges belonging to a tetrahedron
that contains  e.  On the average,  e  belongs
to  5  tetrahedra (because it belongs to  5
faces, since  F ≈ 5E/3, each face having
3  edges).   This edge thus has  15  “neighbors”
(inset):  10  edges which share a node with
e, and  5  opposite in their common tetrahedron.  So there are about  15

e'

e''

e
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extra-diagonal nonzero entries per row, that is, about  90 N  terms of this
kind in  MW, against  3 × 38 = 114 N  in  MP , a sizable advantage in favor of
edge elements.

This rather satisfying conclusion should not mask the obvious problem
with a l l vector potential methods, whatever the finite elements:  a large
number of DoFs, relatively.  In the same conditions as previously, the  ϕ
method only generates 12N  off-diagonal nonzero terms.  In Appendix C,
we shall see how some savings are possible, but only to some extent.
Complementarity has its price.

6.3.5  Conclusion

Focusing on magnetostatics as I do in this book has obvious shortcomings,
but also the advantage of delimiting a narrow field in which theory can
deploy itself, and any fundamental observation in this limited area has
all chances to be valid for magnetics in general.  This seems to be the case
of the nodal elements vs edge elements debate.  But of course, theory will
not carry the day alone, and numerical experience is essential.  We have a
lot of that already.  It began with M. Barton’s thesis [Br] (see an account
in [BC]), whose conclusions deserve a quote:

 When the novel use of tangentially continuous edge-elements for the representation
of magnetic vector potential was first undertaken, there was reason to believe it
would result in an interesting new way of computing magnetostatic field distri-
butions.  There was only hope that it would result in a significant improvement
in the state-of-the-art for such computations.  As it has turned out, however, the
new algorithm has significantly out-performed the classical technique in every
test posed.  The use of elements possessing only tangential continuity of the
magnetic vector potential allows a great many more degrees of freedom to be
employed for a given mesh as compared to the classical formulation;  and these
degrees of freedom result in a global coefficient matrix no larger than that obtained
from the smaller number of degrees of freedom of the other method.  (  . . . )  It has
been demonstrated that the conjugate gradient method for solving sets of linear
equations is well-defined and convergent for symmetric but underdetermined sets
of equations such as those generated by the new algorithm.  As predicted by this
conclusion, the linear equations have been successfully solved for all test problems,
and the new method has required significantly fewer iterations to converge in
almost all cases than the classical algorithm.

One may also quote this [P&], about scattering computations:

Experience with the 3D node-based code has been much more discouraging:  many
problems of moderate rank failed to converge within  N  iterations (. . .).  The
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Whitney elements were the only formulation displaying robust convergence with
diagonal  PBCG7 iterative solution.

Countless objections have been raised against edge elements.  The most
potent one is that  W1, contrary to  IP1, does not contain globally linear
vector fields, like for instance  x → x, and thus lack “first-order
completeness”.  This is both true and irrelevant.  In magnetostatics, where
the object of attention is not the unknown  a  but its curl, we already disposed
of the objection with Prop. 6.4.  But even in eddy-current computations
(where, as we’ll see in Chapter 8, edge elements are natural approximants
for the field  h), it does no good to enlarge  W1  to the space spanned by the
wn∇wm  (which does include linear fields).  See [B4, DB, Mk].

The debate on this and other issues relative to the edge elements vs
nodal elements contest winds its way and will probably go on for long, but
it would be tedious to dwell on it.  As one says, those who ignore history
are bound to live it anew.  A lot remains to be done, however:  research on
higher-order edge elements (to the extent that [Ne] does not close the
subject), error analysis [Mk, MS, Ts], edge elements on other element forms
than tetrahedra, such as prisms, pyramids, etc. [D&].

The problem of singularity addressed in Remark 6.4 is crucial, in
practice, when there is a distributed source-term, as is the case in
magnetostatics.  If the discretization of the right-hand side is properly
done, one will obtain a system of the form  RtM2(σ

−1)R a = Rtk, where  a   is
the DoF-vector of the vector potential, and  k  a given vector, and in this
case the right-hand side  Rtk  is in the range of  RtM2(σ

−1)R.  But otherwise,
the system has no solution, which the behavior of iterative algorithms
tells vehemently (drift, as evoked in 6.3.3, slowed convergence, if not
divergence).  This seems to be the reason for the difficulties encountered
by some, which can thus easily be avoided by making sure that the right-
hand side behaves [Re].  There, again, tree–cotree techniques may come to
the rescue.

Finally, let us brush very briefly on the issue of singularity.  Should
the edge-element formulation in  a  be “gauged”, that is, should the process
of selecting independent variables be pushed further, to the point of having
only non-redundant DoFs?  This can be done by extracting spanning trees.
Such gauging is necessary with nodal elements, but not with edge elements.
Experiments by Ren [Re] confirm this, which was already suggested by
Barton’s work.

7This refers to the “preconditioned biconjugate gradient” algorithm [Ja].
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EXERCISES

See p. 171 for Exercise 6.1, p. 174 for Exer. 6.2, p. 179 for Exer. 6.3, and p. 174 for
Exers. 6.4 and 6.5.
Exercise 6.6.  Let a smooth surface  S  be equipped with a field of normals.
Given a smooth function  ϕ  and a smooth vector field  u, we may define
the restriction of  ϕ  to  S, or trace  ϕS, the tangential part   uS  of  u  (that is,
the surface field of orthogonal projections of vector  u(x)  onto the tangent
plane at  x, where  x  spans  S, as in Fig. 2.5), and the normal component
n · u  of  u.  For smooth functions and tangential fields living on  S, like  ϕS
and  uS, define operators  grad S,  rotS, and  divS  in a sensible way, and
examine their relationships, including integration-by-parts formulas.

HINTS

6.1.  Notice that this approach amounts to solving (11) and (12’).
6.2.  Their physical dimension is the key.  Note that components of  L a
are induction fluxes, and  (M a , a )  has the dimension of energy.
6.3.  For a tetrahedron  T  which contains  e = {m, n}, integrate by parts the
contribution  ∫T h · rot we, hence a weighted sum of the jump  [n × h]   over
∂T.  Check that faces opposite  n  or  m  contribute nothing to this integral.
As for faces  f  which contain  e, relate  ∫f  [n × h] · w e with the circulation
of  [h]  along the median.  Use  rot hm = 0  inside each tetrahedron to
derive the conclusion.
6.4.  Compute the divergence of  u = ∑ n ∈ N  un wn.
6.5.  Take the curls.
6.6.  Obviously,  gradS ϕS  must be
defined as  (grad ϕ)S, and  rot S uS  as
n · rot u, when  ϕ  and  u  live in 3D
space, for consistency.  (Work in
x–y–z  coordinates when  S  is the
plane  z = 0  to plainly see that.)
Verify that these are indeed surface
operators, that is, they only depend
on the traces on  S  of fields they
act on.  Define  divS  by Ostrogradskii–Gauss (in order to have a usable
integration by parts formula on  S), and observe its kinship with  rotS.
You’ll see that a second integration-by-parts formula is wanted.  Use
notation as suggested in inset.

S   . τ   .

n   .

ν    .
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SOLUTIONS

6.1.  It’s equivalent to the two-stage optimization

inf{F ∈ IR :  inf{h' ∈ IHI,  b' ∈ IBF :  E(b',  h')}}

which indeed aims at the lowest error in constitutive law, given  I.
6.2.  Flux × mmf = energy, so all components of  λλλλ  are magnetomotive
forces.  One of them is the driving mmf  I  applied between  Sh

0  and  Sh
1.

All others are associated with faces which pave  Sb, and assume the exact
value necessary to cancel the induction flux through each of these faces.
6.3.  Cf. Fig. 6.9.

m

n

e

e = {m, n}

FIGURE 6.9.  Same circulation of  h  along the equatorial circuit joining the barycenters
of faces and volumes around  e  (i.e., the boundary of the dual cell  e*, cf. Fig. 4.4)
and along the star-shaped circuit that radiates from edge  e  to the centers of faces
containing  e.  The latter circulation is equal to  ∫ h · rot we.

6.4.  Elements of  W1  are divergence-free inside tetrahedra, whereas
div u =  ∑ n ∈ N un · ∇wn  has no reason to vanish.
6.6.  By Stokes,  n · rot u  at point  x  is the limit  (∫γ τ · u)/area(ω ), where  γ
is the boundary of a shrinking surface domain  ω   enclosing  x  (see the
inset in the “hints” section).  Since  τ · u = τ · uS, only the tangential part  uS
is involved.  (Remark that only the orientation of  γ   matters here.  The
normal field serves to provide it, in association with the orientation of
ambient space.)  Note that  ν  = – n × τ  is a surface field of outward unit
normals with respect to  ω .  Since  τ · uS = n × ν  · uS = – ν  ·  n × uS, the
circulation  ∫γ τ · u  is also the outgoing flux (along the surface) of  – n × uS,
which suggests to define the surface divergence as

(35) divS uS = – rotS(n × u),
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also a surface operator by the same argument.  The formula

∫S uS · gradS ϕS = – ∫S ϕS divS uS + ∫∂S ϕS ν  · uS

(where  ν   now refers to the rim of  S), is proved by the same technique as
in dimension 3, but (35) suggests to also introduce a  rot  operator acting on
scalar surface fields, as follows:

rotS ϕS = – n × gradS ϕS,

hence the formula

∫S ϕS rotS uS = ∫S uS · rotSϕS – ∫∂S ϕS τ · uS,

the nice symmetry of which compensates for the slight inconvenience8 of
overloading the symbol  rotS.
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