
CHAPTER 4

The Approximate
Scalar Potential:

Properties and Shortcomings

The question now on our agenda:  Assuming we have solved the linear
system (20) in Chapter 3, and thus obtained the vector  ϕϕϕϕ  of nodal potentials,
to what extent is the approximate solution  ϕm = ∑ n ∈ N  ϕϕϕϕn λ

n  satisfactory
as a representation of the field?  On the side of  h, all goes well:  Setting
h m = grad ϕm 

, we have  rot hm = 0  as well as  n × hm = 0  on  S h  and
∫c τ · hm = I, all that by construction.  Errors are on the side of  b:  We lose
solenoidality of  bm = µh m 

, since not all test functions have been retained.
Some measure of flux conservation still holds, however, and we'll see in
which precise sense.  When the mesh is refined, we expect to recover
div b = 0  “at the limit”;  this is the issue of convergence.  But how f a s t do
h m  and  bm  converge toward  h  and  b, and how f a r apart are they in
energy?  These are related questions, but the latter is more difficult and
will not be resolved before Chapter 6.  Last, there is a property of the true
solution, expressed by the so-called maximum principle, which may be
preserved to some extent, provided the mesh is carefully devised, and
Voronoi–Delaunay meshes seem to be adequate in this respect.

4.1  THE “mmmm -WEAK” PROPERTIES

Last chapter, we defined “discrete” or “m-weak” solenoidality as the
property

(1) ∫D b . grad ϕ' = 0   ∀ ϕ' ∈ Φ0
m ,

that is, with nodal finite elements,  ∫D b · grad λn = 0  for all  n  in the
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subset  N 0 = N – N( Sh).  We shall dub active the nodes of this set, which
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includes inner nodes (i.e., not on  S) and surface nodes interior to  Sb, but not
those at the boundary common to  Sb  and  Sh, where nodal values are
imposed.  Active nodes are those which bear an unknown degree of freedom,
and each of them corresponds to a row of the submatrix  00M  of Eq. (3.20).

4.1.1  Flux losses

Condition (1) is much less stringent than weak solenoidality, so what is
left of  div b = 0?  In the worst case, nothing:  hm  is constant inside a
tetrahedron, so if  µ  varies, then  div(µ h m) = ∇µ · hm , which has no
reason to vanish.  But this is easily cured:  Replace  µ, either before the
computation of  M  by (3.19), or at the stage we consider now, by a mesh-wise
constant function  µ‰, equal to  (∫T µ)/vol(T)  on tetrahedron  T.  Then  bm =
µ‰h m, being mesh-wise constant, is solenoidal inside each  T.  Can we expect
its normal jumps  [n · bm]f , which are a priori constant over each face of the
mesh, to vanish, all of them?  By no means, because that would make  bm
divergence-free and enforce  n · bm = 0  on  Sb.  Thereby, all the equations of
the continuous model would be satisfied by the discrete model (in the case
of a mesh-wise constant  µ), which would then yield the right solution,
and such miracles are not to be expected.  Jumps of  n · bm  don't vanish, so
there is a “loss of induction flux”, equal to the integral of this jump, at
each inter-element boundary.

This prediction is confirmed by comparatively counting these lost fluxes
and the equations.  We have  N  nodes,  E  edges,  F  faces and  T  tetrahedra.
By a famous result in topology to which we shall return, one has

                N – E + F – T = χ,

where  χ, the Euler–Poincaré constant, which a priori seems to depend on
m, is actually determined by the global topological properties of  D.  It's
a small integer, typically 1 for simple domains.  (Exercise 4.1:  Compute  χ
for a single tetrahedron and for a meshed cube.)  Assume a typical mesh,
made by first generating hexahedra, then chopping them into six
tetrahedra each (cf. Exer. 3.7).  Then  T ~ 6N, and  F ~ 12N, since each
tetrahedron has four faces that, most of them, belong to two tetrahedra,
hence  E ~ 7N.  Having about  N  degrees of freedom, we can't satisfy  F
~12N  constraints—but wait, are there really  F  lost fluxes to cancel?  No,
because the fluxes through faces of a same tetrahedron add to zero, since
div bm = 0  inside.  So there are about  F – T  independent lost fluxes to
consider.  Still, this is about  E – N, much larger than  N.
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We must therefore accept nonzero jumps of  n · b  through faces as a
weakness inherent in the method:  bm  is not, as one says, “div-conformal”.
(The latter expression does not mean “solenoidal”:  A
field is  div-conformal when its normal component is
continuous through all surfaces, which is a weaker
condition.)  So the approximate solution fields will not
satisfy the “law of tangents” of (2.5), and indeed, in two-
dimensional simulations, it's fairly common to see flux
lines that behave “wrongly”, as shown in the inset,
staying on the same side of the normal to an edge when going from one
triangle to the next. 1  We are used to that nowadays, knowing this is the
price to pay for having a f inite system of equations to solve instead of the
infinite system that Problem (3.1) represented, and we can rely on the
assurance that with refinement of the mesh, such non-physical behavior
of flux lines will disappear (a proof to this effect will come).  But in the
early days of the finite element method, this feature was met with harsh
criticism, touching off a controversy, some echoes of which can be found in
[CS, EF, FE].
Remark 4.1.  A nonzero jump of  n · b  at element interfaces is equivalent to
the presence of a magnetic charge density  [n · b]  there.  Thus,  bm  can be
described as the induction field that would appear if these fictitious
charges were really present, in addition to the external sources of the
field.  ◊

Let us therefore try to assess the damage as regards these inevitable
flux losses, or spurious charges.  This will depend on an interpretation of
each component of the vector  M ϕϕϕϕ, as follows.

First, let us consider any DoF vector  ϕϕϕϕ, not related to the solution. We
form the mesh-wise affine function2  ϕ = pm(ϕϕϕϕ) = ∑n ∈ N  ϕϕϕϕn λ

n, and the
vector field  b = µ‰  grad  ϕ.  Note that  b  is mesh-wise constant.  By the
very definition of  M,

(M ϕϕϕϕ)n ≡ ∑ m ∈ N  M n m ϕϕϕϕm  = ∫D b · grad λn.

Integrating by parts on each tetrahedron, and summing up, one obtains
(sorry for the clash of  n's):

1Curiously, the bending of flux lines across mesh edges, which is just as “unphysical” in
a homogeneous region, was not regarded as scandalous when the normal was properly crossed
by flux lines.

2The notation  pm  has been introduced in Subsection 3.3.3.

(2) (M ϕϕϕϕ)n = ∑ f ∈ F(n) ∫f [n · b ] λ
n = 1

3  ∑ f ∈ F(n) ∫f [n · b
 
] ,

n
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because the jump is constant over  f, and the average of  λn  over  f  is equal
to 1/3   (Exer. 3.9).  For further reference, let's give a name to  (M ϕϕϕϕ)n, the
component of  M ϕϕϕϕ  at node  n, and call it the flux loss at, or about node  n,
as regards  b.  After (2), this loss is one-third of the sum of flux losses at
faces that have  n  as common node (face set  F(n)).

There is another interpretation of this flux loss, for which it will be
convenient to distinguish inner nodes and surface nodes.  If  n  is an interior
node, the faces of  F(n)  are the “inner faces” of the cluster (the opaque
ones in the inset drawing).  Since  b  is mesh-wise constant,  ∫∂T n · b  = 0  for
all tetrahedra.  The sum of these terms over all tetrahedra of the cluster
is also the sum of the outward flux through the cluster's boundary and of
the inner flux losses.  Therefore, the flux loss at  n  is
one third of the flux entering its cluster.  The same
argument works if  n  belongs to the surface:  Then  n
lies on the polyhedral boundary of its own cluster
(Fig. 4.1), and the flux loss at  n  is one-third of the
flux entering the “polyhedral cap” of  n, as sketched
in Fig. 4.1, right.

Now, consider the case when  ϕϕϕϕ  is the solution of the discrete problem,
Eq. (3.20).  Row  n  of this linear system corresponds, equivalently, to

(3) ∫Dn
 bm · grad λn = 0,           (3')       (M ϕϕϕϕ)n ≡ ∑ m ∈ N (n) M n m ϕϕϕϕm = 0.

So discrete solenoidality entails the cancellation of all flux losses of   bm
at active nodes.  Therefore, by what precedes, the fluxes of  bm  through
the surface of the cluster of each inner node  and through the cap of each
active boundary node must vanish.

n S
n

S

D

FIGURE 4.1.  Left:  Cluster of tetrahedra around a boundary node (D  here is above
the triangulated plane).   Inner faces of the cluster are opaque;  others are transparent.
Right:  Dissecting the cluster's boundary into a “patch” of boundary triangles
around  n, and a “cap” of inside faces.

nf .
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Note that we don't find  n · bm = 0  on faces of  Sb.  Actually, we had no
reason to entertain such hopes, since there are about twice 3 as many faces
as nodes on  Sb, thus not enough equations to cancel all these fluxes.

It's very tempting to try and combine these results by merging clusters
of different nodes into larger clusters, and to say, “Well, just as the flux of
the true solution  b  is null for all closed surfaces inside  D  (remember, this
is the integral interpretation of weak solenoidality), the flux of  bm  through
polyhedral surfaces made of mesh-faces will vanish.”  Fine guesswork . . .
but wrong, as the following exercise will show.
Exercise 4.2.   In dimension 2, suppose  bm  satisfies (3) over a domain that
contains the two “extended clusters” of Fig. 4.2.  Show that the flux through
Σ1  or  Σ2  does not vanish.
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l

FIGURE 4.2.  Part of a 2D mesh  m  by which a discretely solenoidal induction  bm
has been computed.  Although the flux of  bm  through cluster boundaries vanishes,
it does not on the boundaries  Σ1  or  Σ2  of extended clusters, that is, unions of
clusters of node subsets such as  {i, j}  or  {k, l, m}.

And yet there is something correct in this intuition.  But we need
relatively sophisticated new concepts to develop this point.

4.1.2  The dual mesh, and which fluxes are conserved

First, the barycentric refinement  of a simplicial mesh  m.  This is a new
simplicial mesh, which we shall denote by  m/2, obtained as suggested by
Fig. 4.3:  Add one node at each mid-edge and at the center of gravity of

3It’s Euler–Poincaré again, for surfaces this time:  N – E + F = χ, and  2E ~ 3F.  Things
may seem different in dimension 2, where there are almost as many boundary nodes as
boundary edges (the difference is the number of connected components of  Sh).  Still, even
when these numbers coincide, there is no reason to expect fluxes at boundary edges to be
exactly zero.

each face and each tetrahedron, subdivide, and add edges and faces as
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required.  Visualizing it in dimension 2 is easy (Fig. 4.3), but it takes some
imagination in three dimensions.

Next, the dual mesh (the primitive one then being referred to as the
primal mesh).  The dual mesh is not a simplicial mesh, but what can be
called a “cellular” tessellation, the cells being polyhedra, polyhedral
surfaces, broken lines (Fig. 4.4), and points.  The 3-cells, one for each primal
node, are clusters of tetrahedra around  n, but tetrahedra of the subdivided
mesh  m/2, not of  m.  Such a shrunk cluster (see Fig. 4.3 for one in dimension
2) is informally called a “box”.  Fig. 4.4 shows a part of the box around  n,
the part that intersects tetrahedron  T.  Two-cells are associated with
edges:  The  2-cell of edge  e  is the union of all faces of  m/2  that contain
the midpoint of  e, but none of its extremities (Fig. 4.4).  Note that it's not
a plane polygon (though its parts within each tetrahedron are plane).
One-cells, associated with faces, are unions of the two segments which
join the barycenter of a face to those of the two tetrahedra flanking it.
And  0-cells, the nodes of the dual mesh, are centers of gravity of the
primal tetrahedra.

nn

m

{m, n}*

n

m

{l, m, n}*

l

FIGURE 4.3.  Barycentric refinement of a 2D mesh.  Thick edges are those of the
primitive mesh.  Shaded, the “box”, or “dual  2-cell” around node  n.  Right:  dual
cells (for 3D examples, see Fig. 4.4).

There is thus a perfect duality between the two meshes,  p-simplices
of  m  being in one-to-one correspondence with  (d – p)-cells  of the dual
mesh, where  d  is the spatial dimension.  We may denote the dual mesh
by  m*, and play on this notation:  the box around  n  can be denoted  n*
(but we'll call it  B n), the corolla of small faces around edge  e  is  e*, etc.
Note that—this is clear in Fig. 4.3, but valid in all dimensions—dual
p-cells intersect along  dual  q-cells, with  q < p.  In particular, the common
boundary of two adjacent boxes is the dual  2-cell of the edge joining their
nodes.  (Exercise 4.3:   When do two dual  2-cells intersect at a point?  Along
a line?)
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FIGURE 4.4.  Cells of the dual mesh  m*:   All dual  p-cells are unions of  p-simplices
of the barycentric refinement of  m.  From left to right, a part of the box  n*, a 2-cell
e*  around edge  e, and a  1-cell  f

 
*  through face  f.

Finally, for further use, let us define something we shall call, for
shortness,  m* -surfaces:  Surfaces, with or without boundary, made of dual
2-cells.  Box surfaces are  m*-surfaces (after removing the part that may
lie in  S), and the surface of a union of boxes is one, too.  Similarly, of
course, we have  m* -points (nodes of the dual mesh, i.e., centers of
tetrahedra),  m* -lines (made of dual  1-cells), and  m* -volumes (unions of
boxes). 

n
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FIGURE 4.5.  Comparing the fluxes through  Σn  and  S n.  (Beware, this is a 2D
representation, in which surfaces  Σn,  Sn,  S  appear as lines.)

With this, we can refine our interpretation of  M ϕϕϕϕ.  Again, given some
DoF vector  ϕϕϕϕ, form  ϕ = pm(ϕϕϕϕ)  and  b = µ‰ grad ϕ.  Then,
Proposition 4.1.  The term  (M ϕϕϕϕ)n = ∫D b · grad λn, or flux loss of  b  about  n,
is the inward flux of   b  across the surface of the box around  n, if  n  is an
inner node, and across the  “m* -cap” of Fig. 4.5, if  n  is a surface node.

Proof.  Since  b  is divergence-free inside tetrahedra, the difference between
its fluxes through the cluster surface  S n  and through the box surface  Σn  is
due to flux leaks at the parts of inner faces of the cluster which are in the
shell between  Σn  and  Sn  (thick lines in the 2D drawing).  But for each
such face, exactly two-thirds of its area are there (in dimension 2, and on
the drawing, one-half of the edge length).  And since jumps of  n · b   are
constant over each face, the total of these flux leaks in the shell is thus
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two-thirds of the total of flux leaks in the cluster.  The remaining third is
thus the flux through  Σn.  Same reasoning if  n  belongs to the boundary,  Σn
now being the  “m*-cap” over  n  (smaller than the cap of Fig. 4.1) made of
dual  2-cells.  ◊
Remark 4.2.  One cannot overstress the importance of having a barycentric
subdivision to get this result;  the uniformity of the ratio  2/3  between
areas was essential.  ◊

In other words,  (M ϕϕϕϕ)n  is the part of the flux of  b  entering box  Bn
that comes from other boxes, and the entries of  M  govern fluxes between
boxes in a very simple way:  B m  gives  Mn m (ϕϕϕϕm – ϕϕϕϕn)  to  Bn.  The finite
element method thus appears as simple bookkeeping of induction flux
exchanges between boxes, or “finite volumes”, in which the computational
domain has been partitioned.  Exercise 4.4 at the end is an invitation to
follow up on this idea.

With this, we can return to the characterization of  bm :  Its flux through
the box surface of an inner node, or through the small cap of an active
surface node, vanishes.  Since inter-box boundaries are always inside
tetrahedra, where  bm  is solenoidal, there are no flux leaks at such
interfaces, so we may aggregate boxes, and the flux entering such an
aggregate is the sum of flux losses at all nodes inside it.  Therefore, the
flux of  bm  will vanish across polyhedral surfaces of two kinds:  m*-surfaces
that enclose one or several boxes around inner nodes, and “extended  m* -
caps”, covering one or several  Sb-nodes.

To make sense out of this, let's compare the present “discrete” situation
to the “continuous” one.  In the latter, the flux of the true solution  b  is
null for all closed surfaces inside  D  which enclose a volume (this is the
integral interpretation of weak solenoidality), and also, since  n · b = 0  on
Sb, for all surfaces with boundary which, with the help of  Sb, enclose a
volume.  So it goes exactly the same in the discrete situation, except that
surfaces must be made of dual 2-cells.  All this cries out for the introduction
of new definitions, if only for ease of expression:
Definition 4.2.  Let  C  be a part of  D.  A surface in  D ‹  is closed modulo  C
if its boundary is in   C.  A surface   Σ  bounds modulo  C  if there is a volume
Ω   contained in  D ‹  such that  ∂Ω  – Σ  is in  C.
Same concepts4 for a line  σ, which is closed mod  C  if its end-points are

4Lines and surfaces can be in several pieces, but trying to formalize that, via the concept
of singular chain, would lead us too early and too far into homology [GH, HW].  (Don't confuse
the present notion of closedness with the topological one;  cf. A.2.3.)

in  C, and bounds mod   C  if there is a surface  Γ  such that  ∂Γ – σ   is in  C.
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Figure 4.6 gives a few examples.  (As one sees, what is often called
informally a “cutting surface” or “cut” is a closed surface (mod. something)
that doesn't bound.  Cf. Exer. 2.6.)
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FIGURE 4.6.  Left:  Surfaces  Σ1  and  Σ2  are both closed modulo  S b, but only the
latter bounds  mod Sb.  Right:  Lines  σ1  and  σ2  are both closed modulo  Sh, but
only the latter bounds  mod  Sh.

Thus equipped, we can reformulate our findings.  The conditions about
b, in the continuous model, were that  ∫Σ n · b = 0  for all surfaces  Σ  which
bound modulo  Sb.  In contrast, and in full recovery from our earlier fiasco,
we have obtained this:
Proposition 4.2.  The discretized field satisfies  ∫Σ n · bm = 0  for all  m* -surfaces
Σ  which bound modulo  Sb.
Exercise 4.5.   What if there are flux sources inside the domain (cf. Exers.
2.8 and 3.1) ?

4.1.3  The flux through  Sh

The aim of our modelling was supposed to be the reluctance  R = I/F, so we
need the induction flux  F  through the domain in terms of  ϕϕϕϕ.

Following the hint of Remark 3.2, one has

∫D µ |grad ϕ|2 = ∫D b · grad ϕ = ∫S n . b ϕ = I ∫Sh
1
 n · b = I F,

if  ϕ  is the exact solution.  Since  (Mϕϕϕϕ, ϕϕϕϕ)  is by construction the best
approximation we have for  ∫D µ |grad ϕ|2, the best estimate for  F  is the
mesh-dependent ratio  Fm = (Mϕϕϕϕ, ϕϕϕϕ)/I, hence an approximation  Rm  of the
reluctance in our model problem:  Rm = I 2/(Mϕϕϕϕ, ϕϕϕϕ), of which we may remark
it is by default—from below—since  (Mϕϕϕϕ, ϕϕϕϕ), being obtained by minimizing
on too small a space, exceeds the infimum of  ∫D µ |grad ϕ|2.  We'll return
to this in Chapter 6.

Developing  (Mϕϕϕϕ, ϕϕϕϕ), we see that
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Fm = I–1 ∑ n ∈ N  (Mϕϕϕϕ)n  ϕϕϕϕn  = ∑ { (Mϕϕϕϕ)n :  n ∈ N( Sh
1)} ,

since  (Mϕϕϕϕ)n = 0  for all nodes  n ∈ N 0  and  ϕϕϕϕn = 0  or  I  for  n  in  N( Sh
0)  or

N ( Sh
1) .  The flux is therefore approximated by the sum of flux losses at

points of  Sh
1, which is equal, after Prop. 4.1 (aggregate the boxes of all

points of  Sh
1), to the flux at the surface  Σ  of Fig. 4.7 (seen as a broken line

in this 2D sketch), obtained by merging the small caps (m*-caps) of all
nodes of  Sh

1.
h

S

S

b

b

S 0

S h
1

Σ

D

Σ '

F

FIGURE 4.7.  Where to compute the flux of  bm.

Exercise 4.6.  What about  m*-surfaces like  Σ'  in Fig. 4.7?  Show that the
flux of  bm  is the same through all of those which are homologous to  Σ, in
the sense of Exer. 2.6.

As one sees, the “variationally correct” approximation of the flux is
not what a naive approach would suggest, that is,  ∫Sh

1
 µ ∂n(pm(ϕϕϕϕ)), but the

same integral taken over  Σ  (or any  m*-surface homologous to it) instead
of  Sh

1.  One should not, in consequence, use  µ ∂n(pm(ϕϕϕϕ))  as approximation
for the normal induction, but treat the latter, for all purposes, as a surface
distribution  ϕ' → ∫S µ ∂nϕ ϕ', and use the scalar product  (Mϕϕϕϕ, ϕϕϕϕ' )  as
approximation of this integral, with  ϕϕϕϕ'n = ϕ'(xn).  (Cf. Exer. 4.8.)
Exercise 4.7.   In which sense is  M  a discrete analogue of the differential
operator  – div(µ grad )?
Exercise 4.8.   Suppose one solves a problem similar to our model problem,
but with  ϕ, for some reason, equal to a given boundary data  ϕh  on  Sh.
Write down the best estimate of the functional  ∫D µ |grad ϕ|2  in terms of
the DoFs on  Sh.  (This way of expressing the energy inside a region in
terms of boundary values of the field is a very useful procedure, known as
“static condensation” in mechanics.  Can you find a better denomination,
more germane to electromagnetism?)
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4.2  THE MAXIMUM PRINCIPLE

If  ∆ϕ = 0  in some domain,  ϕ  cannot reach its maximum or minimum
elsewhere than on the boundary of the domain.  This is the maximum
principle for harmonic functions.  A similar property holds for the magnetic
potential, and some of it may be retained at the discrete level.

4.2.1  Discrete maximum principle

Let’s recall the proof.  First (an easy assignment):
Exercise 4.9.  Show that the function  y → (4π  |x – y|)–1  is harmonic in
E3 – {x}.
Next, suppose  div(grad ϕ) = 0  in some domain  D.  Consider two spheres
S(x, r)  and  S(x, R)  contained in  D, both centered at  x, with radiuses
r < R, and call  vx  the function  y → (4π)–1(1/|x – y| – 1/R).  Integrate by
parts in the domain  O  between the two spheres, which can be done in two
ways.  First, lifting the  grad  off   vx,

∫O grad ϕ · grad vx = ∫∂O n . grad ϕ  vx

                                    = 1
4π  (r–1 – R–1)∫ S(x, r)  n · grad ϕ =

                                    = – 1
4π  (r–1 – R–1)∫B(x, r) div(grad ϕ) = 0,

and then, the other way around,

∫O grad ϕ · grad vx =

         1
4π  [R–2 ∫ S(x, R) ϕ – r–2 ∫S(x, r) ϕ].

Letting  r  tend to 0, one finds, finally,

(4) ϕ(x) = [∫S(x, R) ϕ]/(4πR2) ,

a useful representation formula, which says that  ϕ(x)  is equal to the
average of  ϕ  over the sphere  S(x, R).  Of course,  ϕ  cannot be extremal at
x  without contradicting this.  Hence the maximum principle.

In the case of a non-unifom, but positive permeability, the magnetic

5This is the basis of Earnshaw’s famous result [Ea]:  “A charged particle in empty space
cannot remain in stable equilibrium under electrostatic forces alone, or alternatively there can
be no maximum or minimum of the potential at points free of charge density.”  (Quoted
from [Sc].)

potential enjoys a similar property,5 but the proof ([GT], Chapter 3) is no

O R

n . r

n .

S(x, r)  .

S(x, R)     .
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longer elementary.  It relies on the intuitive idea that if there was an
isolated maximum at  x, normal fluxes  µ n · grad ϕ  would all be negative
on the surface of a small sphere centered at  x, thus contradicting flux
conservation.

It would be highly unphysical and quite embarrassing indeed if a
similar property did not hold for the computed discrete potential, that
is, if the potential could surpass  I, or be negative, inside  D  or on  S b.  This
won't happen if all extra-diagonal terms of  M  are nonpositive .  Indeed,
one can interpret Eq. (2) as the discretized counterpart of (4), as follows:

(2') ϕϕϕϕn = ∑ { m ∈ N(n), m ≠ n :  (– Mn m/Mn n) ϕϕϕϕm} ,

showing how  ϕϕϕϕn  is the weighted average of neighboring nodal values.
The sum of weights  ∑  m ≠ n – Mn m /Mn n  is always equal to 1  (cf. Remark
3.6), but what counts here is the positivity of each of them:  If all weights
are positive in (2'), then  ϕϕϕϕn  is strictly contained in the interval formed by
the minimum and the maximum values of DoFs  ϕϕϕϕm  around it, and thereby,
Proposition 4.3  (“discrete maximum principle”).  If no extra-diagonal entry
o f  M  is positive, the maximum of the approximate potential  ϕm  on any
cluster  Dn  is reached on its boundary.

As an immediate corollary, the extrema of  ϕm  on  D‹  are reached only
on the boundary, which is the discrete version of the principle recalled at
the beginning of this section.
Exercise 4.10.   Prove  0 ≤ ϕϕϕϕn ≤ I  directly from Eq. (3.20),  00M 0ϕϕϕϕ = – 01M 1ϕϕϕϕI,
by using Prop. 3.6.

Nonpositivity of extra-diagonal terms thus appearing as a desirable
property, when does it hold, and how can it be achieved? An “acute”
mesh (one with no dihedral angle larger than 90°) is enough, as we
remarked earlier.  But this is a sufficient, not a necessary, condition.  What
constitutes a necessary and sufficient condition in this respect does not
seem to be known, although there is a way in which Voronoi–Delaunay6

meshes satisfy this requirement.  Such meshes have stirred interest in
computational electromagnetism [C&, SD, Z&], perhaps because of their
apparent (but still not well understood) connection with “network methods”
[He], or “finite volume methods” (cf. [Va], p. 191).  So let us digress on this

6“Delaunay:  This is the French transliteration of the name of Boris Nikolaevitch Delone,
who got his surname from an Irish ancestor called Deloney, who was among the mercenaries
left in Russia after the Napoleonic invasion of 1812.”  (J. Conway,
//www.forum.swarthmore.edu/news.archives/geometry.software.dynamic/article49.html,
15 12 1994.)

for a while.
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4.2.2  Voronoi–Delaunay tessellations and meshes

In the plane or space (d = 2  or  3  is the dimension), consider a finite set  N
of points, and let domain  D, to be meshed, be the interior of their convex 7

hull.  The Voronoi cell  Vn  of  n  is the closed convex set

Vn = {x ∈ D‹ :  |x – xn| ≤ |x – xm|  ∀ m ∈ N – {n}}

made of points not farther to node  n  than to any other node.  Fig. 4.8 gives
an example, with 11 nodes and as many Voronoi cells (the polygons with
irregular shapes).  
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FIGURE 4.8.  Voronoi-Delaunay mesh in dimension 2.  Note the ambiguity about
point  A  and how it is resolved by arbitrarily preferring  {3, 8}  to  {2, 4}.  A dual
q-cell and the associated  (d – q) -simplex are supported by orthogonal and
complementary affine subspaces, but do not necessarily encounter each other (like
here the edge  e  and its dual  e˜).

These are  “d-cells”, if one refers to their dimension.  One can also
define “q-cells” by taking all non-empty intersections of  d-cells,  two by
two (q = d – 1), three by three (q = d – 2), etc.  Points of these  q-cells are
closer to  d – q + 1  of the original nodes.  For instance, the  (d – 1)-cell
associated with nodes  n  and  m  is

Vn, m = {x ∈ D‹  :  |x – xn| = |x – xm| ≤ |xn – xk|  ∀ k ∈ N – {n, m}},

and  x n  and  xm  are its nearest neighbors among nodes.  Generically,  p
Voronoi cells intersect, if they do, as a convex set of dimension  d + 1 – p.

7
Convexity is important, and special precautions must be taken when generating VD

meshes for nonconvex regions (cf. [Ge], [We]).

There are exceptions:  cf. nodes 3 and 8 in Fig. 4.8, where a small segment
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near point  A  would be made of points closer to 3 and 8, if only 4 and 7
were a little farther away.  For simplicity in this description, we shall
assume that such degenerate cases are absent (although they can be a
nuisance in practice).  Voronoi  d-cells and their intersections form a cellular
tessellation of the domain.

Now let us associate to each of these  q-cells the  p  nodes that define
it,  p = d + 1 – q, that is, nodes which are nearest neighbors to all points of
the  q-cell.  They form a  p-simplex, which we shall call a Dirichlet
simplex.  The Voronoi–Delaunay (VD) mesh is the simplicial mesh thus
obtained.  In spite of its being derived from the Voronoi paving, we shall
consider the simplicial VD mesh as primal, and the system of Voronoi
cells as its dual cellular mesh, and denote by  s˜  the Voronoi cell that
corresponds to the primal simplex  s.  As an example, Fig. 4.8 displays the
Voronoi cell  e˜  of edge  e.

Analogies between this dual and the barycentric one are obvious.  From
the combinatorial point of view, they are even the same:  the dual cells
s*  and  s˜  are defined by the same set of primal nodes.  But the shapes of
the cells differ widely.  Contrary to  m*-cells, Voronoi cells are all convex
and lie in a definite affine subspace (of dimension  q  for  q-cells).  Compare
Figs. 4.4 and 4.9.  On the other hand, barycentric duals always intersect
their primal associates, whereas Voronoi cells may lie some distance away
from their mates (case of  e  and  e˜, Fig. 4.8).

fn T e

e~

f~
n~

FIGURE 4.9.  Cells of the Voronoi dual mesh  m˜.  Compare with Fig. 4.4.

Such VD meshes have remarkable properties.  For instance, this, which
is an almost immediate consequence of the construction principle:
Proposition 4.4.  For each Dirichlet simplex, there is a sphere that contains
it and its lower dimensional faces, but no other simplex.

Proof.  Take a sphere centered at one of the points of the dual Voronoi
cell, of radius equal to the distance to one of the nodes of the simplex
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(inset).  Other nodes of the simplex, being
equidistant, are on the sphere, and all
remaining nodes, being farther away, are
outside.  ◊

This “sphere property”, or circle
property in 2D, happens to be characteristic
(Exercise 4.11:   Give an argument to this
effect), and is a key-element in incremental
VD mesh construction:  To add a new vertex
to what is already a VD mesh, gather the  d-simplices the circumscribed
sphere of which contains this vertex, hence a polytope, which is
subdivided by joining its vertices to the new vertex.  The new mesh is still
a VD one [SI, Wa, We].

In dimension 2, any triangulation can be transformed
into a VD one by successively swapping diagonals of
quadrilaterals formed by adjacent triangles.  Why this
works locally is clear:  Angles of quadrilaterals add to
2π, so one of the two diagonals has opposite angles
which sum up to less than  π, and a swap will enforce
the circle property, as shown in the inset.  The difficulty
is to prove the finiteness of the sequence of swaps [Ch].
(It's due to the swaps decreasing the total area of
circumscribed circles [Ni].)  Let's finally mention the
“maxmin angle property”:  In dimension 2 again, the
VD mesh is the8 one, among all triangulations with the same node set,
that maximizes the smallest angle [RS, SI, Si].  It also minimizes the
energy of the finite element solution [RS].

According to [Hr], what we call nowadays a Voronoi cell was introduced
in two dimensions by Dirichlet [Di] and in  n  dimensions by Voronoi [Vo].
(M. Senechal [Se] also gives priority to Dirichlet.)  Then came Delaunay
[De].  Other names are in use:  “Thiessen polygons” among meteorologists 9

[CR], “Dirichlet domains”, “Brillouin zones”, “Wigner–Seitz cells”, etc.,
among crystallographers.

4.2.3  VD meshes and Stieltjes matrices

Now let's come back to the question of nonpositive off-diagonal coefficients.

8When there is a unique one, of course, which is the generic case, but there are obvious
exceptions (Fig. 4.8 shows one).

There is an apparently favorable situation in dimension 2:

2

6

7
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Proposition 4.5.  Assume  µ  constant in  D.  For all inner nodes   n,  Mm n ≤ 0
for all  m ≠ n.
Proof.  Edge  mn  is flanked by two triangles  T  and  T'  (Fig. 4.10), and the
opposite angles add up to less than 180°, thanks to the circle property.  By
the cotangent formula (3.23),  – Mm n  is proportional to  cot θ + cot θ' ,
which is  ≥ 0  if  θ + θ' ≤ π.  ◊

Alas, this leaves many loose strands.  First, obtuse angles at boundary
triangles (there is one in Fig. 4.8, triangle {8, 10, 11}).  But if the objective
is to enforce the discrete maximum principle, only inner nodes are involved,
and anyway, one may add nodes at the boundary and, if necessary, remesh
(which is a local, inexpensive process).  Second, and more serious, the
condition of uniformity of  µ  is overly restrictive, and although the cure
is of the same kind (add nodes at discontinuity interfaces to force acute
angles), further research is needed in this direction.

C
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T C C'

T '
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n

h h'

M
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FIGURE 4.10.   Proof of (5).  M  and  M'  are the mid-edges.

Proposition 4.5 can be proven in a different and instructive way (Fig.
4.10).  By the cotangent formula, and the obvious angular relation of Fig.
4.10 (where  C  and  C'  are the circumcenters), one has

9Conventionally, the conditions reported by a meteorological station (temperature,
hygrometry, etc.) are supposed to hold in the whole “Thiessen polygon” around that station.
As explained in [CH], “Stations are always being added, deleted, moved, or temporarily
dropped from the network when they fail to report for short periods of time (missing data)”,
hence the necessity to frequently solve the typical problem:  having a Voronoi–Delaunay
mesh, add or delete a node, and recalculate the boundaries.  Recursive application of this
procedure is the standard Watson–Bowyer algorithm for VD mesh generation [Wa], much
improved recently [SI] by making it resistant to roundoff errors.  Fine displays of VD meshes
can be found in [We].

(5) – Mm n = 1
2  (µ(T) cot θ + µ(T') cot θ') = (h µ(T) + h' µ(T'))/|mn|,
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where  |mn|  is the length of edge  {m, n}, and  h, h'  are to be counted
algebraically, in the direction of the outward normal (thus,  h ≤ 0  if the
circumcenter  C  is outside  T, as on Fig. 4.10, right part).  This way, in the
case where  µ  is uniform,  Mm n = – µ (h + h')/|mn|, negative indeed if the
circle condition is satisfied.

This quantity happens to be the flux of  µ grad λn  out of the Voronoi
cell of node  m  (Exercise 4.12:  Prove this, under some precise assumption).
This coincidence is explained in inset:  Although
the Voronoi cell and the barycentric box don't
coincide, the flux through their boundaries is
the same, because  µ ∇λn  is divergence-free in
the region in between.  But beware:  Not only
does this argument break down when there is
an obtuse angle (cf. Exer. 4.12), but it doesn't
extend to dimension 3, where circumcenter and
gravity center of a face do not coincide.

Still, there is some seduction in a formula
such as (5), and it h a s a three-dimensional analogue.  Look again at Fig.
4.9, middle.  The formulas

MŸm n = – [∑F (area(F) µ(F)]/|mn|,    MŸn n = – ∑ m ∈ N MŸm n ,

where  F  is an ad-hoc index for the small triangles of the dual cell
{m, n} Ÿ, do provide negative exchange coefficients between  n  and  m, and
hence a matrix with Stieltjes principal submatrices.  This is a quite
interesting discretization method, but not the finite element one, and
MŸ ≠ M.
Exercise 4.13.   Interpret this “finite volume” method in terms of fluxes
through Voronoi cells.

4.3  CONVERGENCE AND ERROR ANALYSIS

We now consider a family  M  of tetrahedral meshes of a bounded spatial
domain  D.  Does  ϕm  converge toward  ϕ, in the sense that  ||ϕm – ϕ||µ  tends
to zero, when  m .  . .  when  m  does w h a t, exactly?  The difficulty is
mathematical, not semantic:  We need some structure10 on the set  M  to

10The right concept is that of filter [Ca].  But it would be pure folly to smuggle that into
an elementary course.

validly talk about convergence and limit.

m  .

n  .
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The first idea that comes to mind in this respect is to gauge the
“coarseness” of  m, as follows.  Let us denote by  γ n(m), or simply  γ n , the
maximum distance between  xn  and a point of its cluster  D n.  Call grain of
the mesh, denoted  γ (m)  or simply  γ , the least upper bound of the  γ ns,
which is also the maximum distance between two points which belong to
the same tetrahedron  T, or maximum diameter of the  T's.

Now, the statement to prove would seem to be, in the time-honored
ε–δ  tradition of calculus, “Given  ε > 0, there exists  δ > 0  such that, if
γ (m) ≤ δ, then  ||ϕm – ϕ||µ ≤ ε.”  Unfortunately, this is plainly f a l s e.  There
are straight counter-examples of meshes of arbitrary small grain for which
the energy of the computed field stays above the energy minimum by a
finite amount:  Obtuse angles, larger and larger, do the trick [BA].

What we may expect, however, and which turns out to be true, is the
validity of the above statement if the family of meshes is restricted by
some qualifying conditions.  “Acuteness”, for instance, defined as the
absence of obtuse dihedral angles between any two adjacent faces, happens
to work:  The statement “Given  ε > 0, there exists  δ > 0  such that, i f  m  i s
acute, and if  γ (m) ≤ δ, then  ||ϕm – ϕ||µ ≤ ε” is true (we'll prove it).

Such convergence results are essential, because it would make no sense
to use the Galerkin method in their absence.  But in practice, they are not
enough:  We should like to know which kind of mesh to build to obtain a
prescribed accuracy.  Knowing how the above  δ  depends on  ε  would be
ideal:  Given  ε, make a mesh the grain of which is lower than  δ(ε).  No
such general results are known, however, and we shall have to be content
with asymptotic estimates of the following kind:

(6) ||ϕm – ϕ||µ ≤ C γ (m)α,

where  α  is a known positive exponent and  C  a constant11 which depends
on the true solution  ϕ, but not on the mesh.  Again,  C  cannot be known in
advance in general, but (6) tells how f a s t the error will decrease when
the grain tends to 0, and this is quite useful.  One usually concentrates on
the exponent  α, which depends on the shape functions.  Typically,  α = 1
for the  P1  elements.

We shall first present the general method by which estimates like
(6) can be obtained, then address the question of which restrictions to
force on  M  in order to make them valid.

11From now on, all  C's  in error estimates will be constants of this kind, not necessarily
the same at different places, which may depend on  ϕ  (via its derivatives of order 2 and
higher, as we shall see), but not on the mesh.
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4.3.1  Interpolation error and approximation error

Let's develop an idea that was only suggested in Section 2.3.
First, a definition:  Given a family  M  of

meshes, an interpolation procedure is a
similarly indexed family of linear mappings
rm :  U → Φm , where  U  is dense in  Φ∗.  Let's
give an example immediately:  U  is made of
all continuous functions over  D ‹  that vanish on
Sh

0, and its  m-interpolate is

rmu = ∑ n ∈ N u(xn) λ
n.

In other words,  u  is sampled at nodes, and linearly interpolated in between.
This explains why  U  cannot coincide with  Φ∗  (the complete space),
which contains non-continuous functions, for which nodal values may not
make sense.  In fact, for technical reasons that soon will be obvious, we
further restrict  U  to piecewise  2-smooth functions that vanish on  S h

0.
The energy distance  ||u – rmu||µ = [∫D µ |grad(u – rmu)|2]1/2  between a function
and its interpolate is called the interpolation error.

Next, let's suppose we know something of the same form as (6) about
the interpolation error,

(7)  || u – rmu ||µ ≤ C(u) γ (m)α.

Then, two things may happen.  If the true solution  ϕ  is a member of the
class  U, the remark of Section 3.3 (cf. Fig. 3.4) about the approximation
error  ||ϕm – ϕ||µ  being lower12 than the interpolation error  ||rm ϕ – ϕ||µ
immediately yields (6), with  C = C(ϕ).  So we may conclude that for
meshes of the family for which (7) holds,  rm ϕ  converges in energy toward
ϕ  when the grain tends to  0.  Moreover, the speed of the convergence is
what the interpolation procedure provides.

This situation does not present itself all the time, however, because
the solution may not be smooth enough to belong to  U  (cf. the example of
Exer. 3.6).  But the density of  U  still allows us to conclude:  Given  ε,
there exists some  u ∈ U  such that  ||u – ϕ||µ ≤ ε/2, and since

||ϕm – ϕ||µ ≤ ||rmu – ϕ||µ ≤ ||rmu – u||µ + ||u – ϕ||µ,

12Note that  r mu ∈ ΦI  if  u ∈ ΦI  with the present interpolation procedure, if one turns a
blind eye to possible variational crimes at the boundary.  This is important in asserting that
| |ϕm – ϕ | |µ ≤ | |rmϕ – ϕ | |µ.

Sb Sh
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||rmu – u||µ  will be smaller that the still unspent half-epsilon for  γ (m)
small enough, hence the convergence.  The convergence speed, however, is
no longer under control.  This is not a practical difficulty, because
singularities of  ϕ  are usually located at predictable places (corners,
spikes), and special precautions about the mesh (pre-emptive refinement,
or special shape functions) can be taken there.

4.3.2  Taming the interpolation error:  Zlamal's condition

We may therefore concentrate on the interpolation error.  By the very
definition of hat functions, one has

(8) ∑ n ∈ N λn(x) (xn – x) = 0   ∀ x ∈ D,

which makes sense as a weighted sum of vectors  xn – x.
Let  u  be an element of  U.  We'll make use of its second-order Taylor

expansion about  x, in integral form, as follows:

(9) u(y) = u(x) + ∇u(x) · (y – x) + 1
2  Au(x, y)(y – x) · (y – x)

where, denoting  ∂2u  the matrix of second derivatives of  u,

Au(x, y) = ∫0
1 (1 – t2) ∂2u(x + t(y – x)) dt,

a symmetric matrix that smoothly depends on  x  and  y.  Note that  ∇u(x)
is treated as a vector in (9), and that  Au  acts on vector  y – x.
Remark 4.3.  The validity of formula (9) is restricted to pairs of points
{x, y}   which are linked by a segment entirely contained in  D.  Not to be
bothered by this, we assume  u  has a smooth extension to the convex hull
of  D.  Anyway, only values of  A u(x, y)  for points  x  and  y  close to each
other will matter.  ◊

It is intuitive that the distance between  u  and its interpolate  rmu
should depend on the grain in some way.  Our purpose is to show that if
the mesh is “well behaved”, in a precise sense to be discovered, the
quadratic semi-norm, which differs only in an inessential way from the
energy one,

||u – rmu|| = [∫D |∇(u – rmu)|2]1/2,

is bounded by  γ (m), up to a multiplicative constant that depends on  u
(via its derivatives of order  2).

By Taylor's formula (9), we have, for all node locations  xn,
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u(xn) = u(x) + ∇u(x) · (xn – x) + 1
2  Au(x, xn)(xn – x) · (xn – x).

Multiplying this by  λn, then using (8) and (9), we see that

rmu(x) = u(x) + ∑ n ∈ N λn(x) αn(x),

where

(10) αn(x) = 1
2  Au(x, xn)(xn – x) · (xn – x).

Therefore,

(11) ∇(rmu – u) = ∑ n ∈ N λn ∇αn + ∑ n ∈ N αn ∇λn.

On  Dn, after (10),  |∇αn|  is bounded by  γ n, up to a multiplicative constant.
Fields  λn ∇αn  are thus uniformly bounded by  C γ   on  D, and the first term
on the right in (11) is on the order of  γ (m).  The one term we may worry
about is therefore  ∑ n ∈ N αn ∇λn.
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FIGURE 4.11.  The norm  |∇λn|  is  1/an, where  an  is the length of the altitude
drawn from node  n  to the opposite face.  Right (in 2D for clarity, but this
generalizes without problem), the ratio  an/γ  is always larger than  r(T)/R(T),
hence “Zlamal's condition” [Zl]:  R(T)/r(T) ≤ C, for all triangles and all meshes in
the family.  It amounts to the same as requiring that the smallest angle (or in 3D,
the smallest dihedral angle) be bounded from below.

And worry we should, for  ∇λn  can become very large:  Its amplitude
within tetrahedron  T  is the inverse of the distance  an  from node  n  to the
opposite face in  T  (Fig. 4.11), so there is no necessary link between  |∇λn|
and  γ n.  But it's not difficult to establish such a link if the mesh behaves.
Remarking that, for  x  in  T  (refer to Fig. 4.11, right, for the notation),

|xn – x| |∇λn(x)| ≤ γ n/an ≤ R(T)/r(T) ,

we are led to introduce the dimensionless number
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A(m) = sup T ∈ T(m) R(T)/r(T)

(maximum ratio of radii of the circumscribed and inscribed spheres), which
measures the global “angle acuteness” of the mesh, as explained under
Fig. 4.11.  Then

|∑ n ∈ N αn(x) ∇λn(x)| ≤  C ∑ n ∈ N  γ n|xn – x| |∇λn(x)|

                                     ≤ CA(m) γ (m) .

So then, the second term on the right in (11) also is in  γ (m), and we have,
whatever  x,

(12) |∇(rmu – u)(x)| ≤ C A(m) γ (m) .

Integrating (12) over the bounded domain  D, we find that

(13)  supm A(m) < ∞ ⇒ ||u – rmu|| ≤ C(D, u) γ (m) .

Hence our first result:  For a family of meshes with bounded acuteness,
there is convergence when the grain tends to 0, and the exponent  α  in (7)
is equal to 1.

 The existence of such an upper bound for acuteness is equivalent to
Zlamal's famous “angle condition” (Fig. 4.11):  All angles, for all meshes
in the family, should be bounded from below by a fixed, positive amount.

4.3.3  Taming the interpolation error:  Flatness

But the rough way by which we obtained estimates suggests that Zlamal's
condition may be too strong.  Actually, very early in the practice of finite
elements, it was clear from experience that acute angles were not necessarily
“bad”.  Besides, as we saw with Exercises 3.14 and 3.15, there is a way to
recover finite difference schemes from finite element approximations by
using a regular orthogonal mesh and by halving rectangles, in dimension
2, or dissecting hexahedra into tetrahedra, in dimension 3.  The
approximation theory for such finite difference schemes was well-
established at the beginning of the finite element era, and it showed no
trace of an “acute angle condition”, which strongly suggested that Zlamal's
condition was too strong indeed.

It took some time, however (in spite of an early remark by Synge [Sy]),
before the condition was properly relaxed, and replaced, in dimension 2,
by a maximum angle condition, with counter-examples showing that obtuse
angles were effectively detrimental [BA], and a more accurate condition
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(less intuitive than Zlamal's criterion, unfortunately) was formulated [Ja].
The current state of the art can be summarized informally like this:  “If
the error is too large, or if convergence rate seems poor, don't blame it on
acute angles.  Watch out for obtuse angles instead.”

To make this more precise, let us try and improve on the above estimate,
as follows.  We have, using  λn = 1 – ∑ m ≠ n λ

m  to pass from line 2 to line 3 of
the following string of equalities, and imbedding  E  in  N × N  the obvious
way,

||∑ n ∈ N αn ∇λn||2 = ∫D |∑ n ∈ N αn ∇λn|2

                = ∑ n ∈ N, m ∈ N  ∫D αn αm ∇λn · ∇λm

                = ∑ n ≠ m ∫D αn αm  ∇λn · ∇λm – ∑ n ≠ m ∫D αn
2 ∇λn · ∇λm

                = ∑ n ≠ m ∫D αn(αm – αn) ∇λn · ∇λm

                = – ∑ {m, n} ∈ E ∫D (αm – αn)
2 ∇λn · ∇λm

                = – ∑ T ∈ T ∫T ∑ {m, n} ∈ E (T) (αm – αn)
2 ∇λn · ∇λm.

As  αm – αn =
1
2  Au(xm – x) · (xm – x) – 1

2  Au(xn – x) · (xn – x)  (up to terms
of higher order), one has, with the same degree of approximation,
αm – αn ~ 1

2  Au(xm – xn) · (xn + xm – 2x), hence the estimate

|αm – αn| ≤ Cγ n |xm – xn|.

Let us therefore introduce the dimensionless quantity

(14) F(m) = sup T ∈ T [∫T ∑ {m, n} ∈ E (T) |xn – xm|2 |∇λn · ∇λm|/vol(T)]1/2

and call it “flatness” of the mesh.  Then,

||∑ n ∈ N αn ∇λn||2 ≤ C γ (m)2 F(m)2 ∑ T ∈ T vol(T) ,

so we may conclude:

(15) supm F(m) < ∞ ⇒ ||u – rmu|| ≤ C(D, u) γ (m) .

By limiting flatness, thus, one makes sure the interpolation error will
tend to zero with the mesh grain, just as one did by limiting acuteness, via
Zlamal's criterion.

But flatness, in this respect, is a better criterion than acuteness, for
controlling the latter amounted to bounding  |∇λn| |∇λm|  instead of
|∇λn · ∇λm|.  When evaluating flatness, near orthogonality of  ∇λn  and
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∇λm  is acknowledged as a favorable factor (cf. the cotangent formula),
which the acuteness criterion ignores.

Still, what we have in (14) is only an algebraic figure of merit, not
yet formally linked with the shape of the tetrahedra.  We now prove
that a ban on obtuse angles does limit flatness (and hence, since (15) applies,
is a sufficient, though not necessary
condition for convergence).
Lemma 4.1.  One has  mk · ∇λn = 0  unless  n
= k  or  m, and  mn · ∇λn = 1.
Proof.  The circulation of  ∇λn  along edge
{m, k}  is  mk · ∇λn.  On the other hand,
the circulation of  ∇λn  along any line is
the difference of values of  λn  at its ends
(inset), and  λn  vanishes at all nodes except
n, where it takes the value  1.  ◊

Proposition 4.6.  In spatial dimension  d, one has

(17) – ∑ {m, n} ∈E (T) |xn – xm|2 ∇λn · ∇λm = d.

Proof.  The proof is easy if  d = 2, and we sketch it for  d = 3.  Start from
the following identity (Jacobi's),

kn × (kl × km) + kl × (km × kn) + km × (kn × kl) = 0,

which entails  kn × ∇λn + kl × ∇λl + km × ∇λm = 0.  Square this, using the
identity  (a × b) · (c × d) = a  . c  b . d – a  . d  b . c, and Lemma 4.1.  Square
terms give things like  |kn| 2 |∇λn|2 – 1  and rectangle terms contribute
factors like

2 (kn × ∇λn) · (km × ∇λm) = 2 kn · km  ∇λn · ∇λm

                         = (mn2 – km2 – kn2) ∇λn · ∇λm.

Adding all that yields (17).  ◊
Corollary.  If all dihedral angles are acute, then

||u – rmu|| ≤ C(D, u) γ (m) .

Proof.  Then all coefficients  ∇λn · ∇λm  are negative, and therefore

||∑ n ∈ N αn ∇λn||2 ≤ – C ∑ T ∈ T ∑ {m, n} ∈ E(T) ∫T (αm – αn)
2 ∇λn · ∇λm

            ≤ – C γ (m)2 ∑ T ∈ T vol(T) ∑ {m, n} ∈ E(T) |xn – xm|2 ∇λn · ∇λm 

n

m

λ   = 0
n

λ   = 1n
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              ≤ dC γ (m)2 ∑ T ∈ T vol(T) ≡ dC γ (m)2 vol(D).  ◊

Thus, acute meshes have all virtues:  well-behaved interpolation error,
and enforcement of the discrete maximum principle.  A pity they are so
difficult to produce!

Anyway, there is something disappointing in all these error estimates
and convergence criteria:  Nowhere did we find any indication on how to
compute upper bounds on the approximation error, either a priori (but let's
not dream) or a posteriori.  So the simple and so important question, “how
far apart are  ϕ  and  ϕm ?” is still unanswered.  We'll find a way in this
direction in Chapter 6.  But before that, we need improved mathematical
equipment.

EXERCISES

Exercises 4.1, 4.2, and 4.3 are on pp. 96, 99, and 100, respectively.
Exercise 4.4.   Suppose the problem consists in finding  ϕ  in  Φ0  such that
∫D µ grad ϕ · grad ϕ'  = ∫D f ϕ' + ∫S g ϕ'  ∀ ϕ' ∈ Φ0.  Use the “flux accounting”
idea to find the discrete equations directly.
Exercises 4.5 to 4.9 are on pp. 103 to 105, Exer. 4.10 is on p. 106, and Exers. 4.11
to 4.13 are on pp. 109 to 111.

HINTS

4.1.  Cf. Exer. 3.7 for the cube.  But you will see the result does not depend
on which way the cube is partitioned.
4.2.  Use (2), with obvious changes to cater for dimension 2:  1/2 instead of
1/3, etc., and sum over the nodes of the subset list.  The most effective way
to proceed may be to label all edge sides, as in Fig. 4.12 below, and to
work out the algebraic relations implied by (3) between outward fluxes.
Remember that fluxes across the whole boundary of an element must vanish.
4.3.  Edges must be neighbors, but this can happen in two ways:  by sharing
a node (then both belong to some face), or not (then both belong to some
tetrahedron).  Draw the parts of the  2-cells inside a single tetrahedron
in order to visualize the intersection.
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4.4.  Data  f  and  g  are flux loss densities, so their integrals over boxes, or
in the case of  g, the part of the box's boundary that lies in  S, balance
inter-box exchanges.
4.5.  Apply Prop. 4.2 to  b – µ0 m.
4.6.  Σ1  does not bound modulo  Sb, but the union of two such surfaces does,
hence the equality of fluxes through each of them.
4.7.  Since  (Mϕϕϕϕ)n  has the dimensions of a flux, whereas  – div(µ grad ϕ)  is
a flux density, introduce the volume of the box  Bn.
4.8.  Call  hϕϕϕϕ  the vector of nodal values on  S h, and use the same block
forms as in Section 3.3.3, with  ϕϕϕϕ = { 0ϕϕϕϕ, hϕϕϕϕ}.  Observe that  ∫D µ |grad ϕ|2 =
∫S µ ∂nϕ ϕh = ∫Sh µ Pϕh  ϕh, where  P  is a certain linear operator.  The aim of
the exercise is thus to work out the discrete analogue of this operator.
How does it relate with the reluctance of the region, “as seen from the
boundary”?
4.9.  Work on  x → 1/|x|, and remember  div(ϕ u) = ϕ div u + ∇ϕ · u.
4.10.  Show that  0ϕϕϕϕ ≥ 0  first, then work on the translate  ϕϕϕϕ – I  to show
that  0ϕϕϕϕ ≤ I, by the same method.
4.11.  Suppose a non-Delaunay tetrahedron is in the mesh.  Show that its
circumscribed sphere must contain other nodes.
4.12.  Note that the flux density through  CC'  is  1/|mn|.  Treat separately
segments  CC'  and  MC, M'C', of the cell boundary.  Beware the obtuse
angle.
4.13.  Same as Exer. 4.12, if all circumcenters are inside tetrahedra.

SOLUTIONS

4.1.  Tetrahedron:  χ = 4 – 6 + 4 – 1 = 1.  Cube without inner edge:  χ = 8 – 18
+ 16 – 5 = 1.  With one:  χ = 8 – 19 + 18 – 6 = 1.
4.2.  The following pedestrian solution works convincingly.  Call  Fk  the
outgoing flux at edge  k, with the labelling of Fig.  4.12.  One has  F2 + F11 +
F12 = 0, and eight other similar relations.  Add them all, which results in
∑ 1 ≤ k ≤ 27  Fk = 0.  On the other hand, relation (2) expressed at nodes  i  and  j
implies  ∑ 8 ≤ k ≤ 17  Fk + F26 + F 27 = 0  and  ∑ 18 ≤ k ≤ 25  Fk + F26 + F 27 = 0
respectively.  Add these, and subtract the previous one, hence  2 (F26 + F27)
= ∑ 1 ≤ k ≤ 7  Fk, which is the flux exiting from  Σ1.  But  F 26 + F 27  is one of the
“flux leaks”, which has no reason to vanish.  (If that accidentally
happened, a slight perturbation in the nodal positions would restore the
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generic situation.)  The case on the right is similar:  The flux exiting from
Σ2  is the sum of flux leaks at the perimeter of  T, that is,  ∑ 1 ≤ k ≤ 6 F k.
Subtract  F 1 + F 2 + F3, which is 0, and what remains,  F 4 + F5 + F 6 , again
does not vanish, generically.
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FIGURE 4.12.  Ad-hoc edge numberings for Exer. 4.2.

4.3.  Figure 4.13.
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FIGURE 4.13.  How dual  2-cells can intersect.  Left:  Edges  e 1  and  e2  have a
common node, and define face  f.  Then  e 1*  and  e2*  intersect along  f*.  Right:
they belong to the same tetrahedron, but without any common node.  Then
e1* ∩ e2*  is the barycenter of  T.

4.4.  Define  fn = ∫Bn
 f  and  gn = ∫S ∩ ∂B n

 g.  Then box  Bn  receives  (M ϕϕϕϕ)n   from
adjacent  boxes and loses  fn + gn.  The linear system to solve is thus  M ϕϕϕϕ =
f + g.  The equations are identical if  f  and  g  are approximated by
mesh-wise affine functions.

4.7.  Let us denote by  Vn  the volume of the box  Bn  and by  V  the  diagonal
matrix of the  Vn‘s.  Since  (Mϕϕϕϕ)n  is the “flux loss at  n”, the term  (Mϕϕϕϕ)n/Vn
can be dubbed the “flux loss density about  n”.  Since, on the other hand,
∫ Σn

 n  . b =  ∫ Σn
 µ n · grad ϕ = ∫ Bn

 div(µ grad ϕ), this flux-loss density is
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– div(µ grad ϕ)  in the continuous case.  The matrix equivalent of
– div(µ grad ), therefore, is not  M  but  V–1M.

4.8.  Let's do things formally:  Φh  is the functional space  {ϕ ∈ Φ :  ϕ = ϕh  on
Sh}, and  ϕ  satisfies  ∫D µ grad ϕ · grad ϕ' = 0  ∀ ϕ' ∈ Φ0.  This solution
linearly depends on the data  ϕh, hence a linear map  P :  ϕh → µ ∂nϕ.  Now,
integrating by parts,13  ∫D µ |grad ϕ|2 = ∫Sh Pϕh ϕh.  The best estimate of this
is  (Mϕϕϕϕ, ϕϕϕϕ), as evaluated by taking account of the relation  00M 0ϕϕϕϕ + 01M hϕϕϕϕ =
0.  Therefore,

(Mϕϕϕϕ, ϕϕϕϕ) = (10M 0ϕϕϕϕ + 11M hϕϕϕϕ, hϕϕϕϕ) = ([11M – 10M(00M)–1  01M] hϕϕϕϕ, hϕϕϕϕ)

              = (P hϕϕϕϕ, hϕϕϕϕ) .

The variationally correct approximation of  P, accordingly, is found to be
P = 11M – 10M(00M)–1  01M.  In case of one mmf  I, reluctance  R  is related with
the magnetic coenergy by  ∫D µ |grad ϕ|2 = I 2/R.  Matrix  P  is thus the
inverse of a “multipolar inductance”, by which the region can been treated
as an inductive circuit element, in some higher-level modelling.

4.9.  First,  grad(x → |x|2) = x → 2x, and therefore,  grad(x → |x|α) =
x → α |x|α – 2 x.  In particular (and of constant usefulness), the gradient of
x → |x|  is  x → x/|x|  and  grad(x → 1/|x|) = x → – x/|x| 3.  Now,
div(x → x) = 3, by Exer. 1.3, thus

  ∆(x → 1/|x|) = x → [– 3/|x|3 + 3 x · x/|x|5] ≡ 0  if  x ≠ 0.

4.10.  All entries of  01M  are off-diagonal in  M, so  – 01M 1ϕϕϕϕI ≥ 0, in the
notation of Chapter 3.  The principal submatrix  00M  is Stieltjes, hence  0ϕϕϕϕ
= – ( 00M)–1 01M 1ϕϕϕϕI ≥ 0.  Now invert the roles of boundaries  Sh

0  and  Sh
1,

setting  ϕϕϕϕ – I = 0  on   Sh
1  and  – I  on  Sh

0, hence all potentials  ≤ I  by the
same reasoning.

4.11.  If a tetrahedron is retained in the VD mesh, it's because there is a
set of points which are closer to its vertices than to all other nodes, and
this set contains the center of the circumscribed sphere.  So this center is
closer to another node if the tetrahedron was not Delaunay to start with.
(One may apply the same reasoning to all simplices, not only those of
maximum dimension:  Introduce the “mediator set” of a subset of nodes, as
the set of points equidistant to all of them, and center circumscribed spheres
on points of this set.)

13All this implicitly assumes some regularity, but the reader is encouraged to ignore such
issues, which will be addressed in earnest in Chapter 7.
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4.12.  Since  µ∇λn = 0  out of  T ∪ T', the flux to consider is through the
broken line  MCC'M'.  But since  ∇λn  is parallel to  MC  and  M'C', what
remains is the flux through  CC', which is  µ (h + h')/|mn|.  The whole
thing breaks down if one of the circumcenters,  C  for instance,  is outside
its triangle, for then  ∇λn  is not parallel to the part of  MC  lying
inside  T' .
4.13.  If all circumcenters are inside tetrahedra, this is the box-method,
relative to Voronoi boxes.
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