
CHAPTER 3

Solving for the Scalar Magnetic
Potential

3.1  THE “VARIATIONAL” FORMULATION

We now treat the problem we arrived at for what it is, an equation, to be
studied and solved as such:  Given a bounded domain  D, a number  I  (the
mmf), and a function  µ  (the permeability), subject to the conditions
0 < µ0 ≤  µ ≤ µ1  of Eq. (18) in Chapter 2,

  f ind  ϕ ∈ ΦI = {ϕ ∈ Φ :   ϕ = 0  on  Sh
0,   ϕ = I  on  Sh

1}  such that
(1)

    ∫D µ grad ϕ · grad ϕ' = 0    ∀  ϕ' ∈ Φ0.

S
b S

h
0

S
h
1

n
D

FIGURE 3.1.  The situtation, reduced to its meaningful geometrical elements.

All potentials  ϕ  and test functions  ϕ'  belong to the encompassing
linear space  Φ  of piecewise smooth functions on  D  (cf. 2.4.2), and the
geometrical elements of this formulation, surface  S = Sh ∪ Sb, partition  Sh

= S
h
0 ∪ Sh

1  of the “magnetic wall”  Sh  (Fig. 3.1), are all that we abstract
from the concrete situation we had at the beginning of Chapter 2.  We
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note that the magnetic energy (or rather, coenergy, cf. Remark 2.6) of
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h = grad ϕ, that is,

F(ϕ) = 1
2  ∫D µ |grad ϕ|2,

is finite for all elements of  Φ.  The function  F, the type of which is
FIELD → REAL, and more precisely,  Φ → IR, is called the (co)energy
functional.
Remark 3.1.   The use of the quaint term “functional” (due to Hadamard),
not as an adjective here but as a somewhat redundant synonym for
“function”, serves as a reminder that the argument of  F  is not a simple
real- or vector-valued variable, but a point in a space of infinite dimension,
representative of a field.  This is part of the “functional” point of view
advocated here:  One m a y treat complex objects like fields as mere “points”
in a properly defined functional space.  ◊

Function  F  is quadratic with respect to  ϕ, so this is an analogue, in
infinite dimension, of what is called a quadratic form  in linear algebra.
Quadratic forms have associated polar forms.  Here, by analogy, we define
the polar form of  F  as  F(ϕ, ψ) = ∫D µ grad ϕ · grad ψ, a bilinear function of
two arguments, that reduces to  F, up to a factor 2, when both arguments
take the same value.

The left-hand side of (1) is thus  F  (ϕ, ϕ' ) .  This cannot be devoid of
significance, and will show us the way:  In spite of the dimension being
infinite, let us try to apply to the problem at hand the body of knowledge
about quadratic forms.  There is in particular the following trick, in which
only the linearity properties are used, not the particular way  F  was
defined:  For any real  λ,

(2) 0 ≤ F(ϕ + λψ) = F(ϕ) + λ F(ϕ, ψ) + λ2 F(ψ)   ∀ ψ ∈ Φ.

One may derive from this, for instance, the Cauchy–Schwarz inequality,
by noticing that the discriminant of this binomial function of  λ  must be
nonnegative, and hence

F(ϕ, ψ) ≤ 2 [F(ϕ)]1/2 [F(ψ)]1/2,

with equality only if  ψ = aϕ + b, with  a  and  b  real,  a ≥ 0.  Here we
shall use (2) for a slightly different purpose:
Proposition 3.1.  Problem (1) is equivalent to

(3)  Find  ϕ ∈ ΦI  such that  F(ϕ) ≤ F(ψ)   ∀ ψ ∈ ΦI,

the coenergy minimization problem.
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Proof.  Look again at Fig. 2.8 , and at Fig. 3.2 below.  If  ϕ  solves (3), then
F(ϕ) ≤ F(ϕ + λϕ')  for all  ϕ'  in  Φ0, hence  λ F  (ϕ, ϕ') + λ2 F(ϕ') ≥ 0  for all
λ ∈ IR,  which implies (the discriminant, again1) that  F(ϕ, ϕ') = 0  for
all  ϕ'  in  Φ0, which is (1).  Conversely, if  ϕ  solves (1), and  ψ  belongs to
ΦI, then (cf. (2))  F(ψ) = F(ϕ) + F(ϕ, ψ – ϕ) + F(ψ – ϕ) = F(ϕ) + F(ψ – ϕ) ≥
F(ϕ), since  ψ – ϕ ∈ Φ0  and  F(ψ – ϕ) ≥ 0.  ◊

This confirms our intuitive expectation that the physical potential
should be the one, among all eligible potentials, that minimizes the
coenergy.  Problem (3) is called the variational form of the problem.  In
the tradition of mathematical physics, a problem has been cast in
variational form when it has been reduced to the minimization of some
function subject to some definite conditions, called “constraints”.  The
constraint, here, is that  ϕ  must belong to the affine subspace  ΦI  (an
affine constraint,  therefore).  Such problems in the past were the concern
of the calculus of variations, which explains the terminology.  Nowadays,
Problem (1) is often described as being “in variational form”, but this is an
abuse of language, for such a weak formulation does not necessarily
correspond to a minimization problem:  In harmonic-regime high-frequency
problems, for instance, a complex-valued functional is stationarized, not
minimized.  For the sake of definiteness,  I’ll refer to (1) as “the weak
form” and to (3) as “the variational form”.
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FIGURE 3.2.  Geometry of the variational method (ψ = ϕ + ϕ').

Conversely, however, variational problems with affine constraints
have as a rule a weak form, which can be derived by consideration of the
directional derivative2 of  F  at point  ϕ.  By definition, the latter is the
linear map

(4) ψ → lim λ → 0 [F(ϕ + λψ) – F(ϕ)]/λ.

1Alternatively, first divide by  λ, then let  λ  go to  0.
2Known as the Gâteaux derivative.

If  ϕ  yields the minimum, the directional derivative of  F  should vanish
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at  ϕ, for all directions that satisfy the constraint.  The condition obtained
that way is called the Euler equation of the variational problem.

Here, (4) is the map  ψ → F(ϕ, ψ), after (2).  Therefore, Problem (1),
which expresses the cancellation of this derivative in all directions
parallel to  Φ0, is the Euler equation of the coenergy minimization
problem (3).

Exercise 3.1.  Find variational forms for Problems (2.34) and (2.36).
In the space  Φ∗  of the last chapter (Exer. 2.9), which is visualized as

ordinary space in Fig. 3.2, we may define a norm,  ||ϕ||µ = (2F(ϕ) )1/2 ≡
[∫D µ |grad ϕ|2]1/2, hence a notion of distance:  The distance in energy  of
two potentials is  dµ(ϕ, ψ) = ||ϕ – ψ||µ ≡ [∫D µ |grad(ϕ – ψ)|2]1/2.  The variational
problem can then be described as the search for this potential in  ΦI  that
is closest to the origin, in energy:  in other words, the projection of the
origin on  ΦI.

Moreover, this norm stems from a scalar product, which is here, by
definition,  (ϕ, ψ)µ = ∫D µ grad ϕ · grad ψ  (≡ F(ϕ, ψ), the polar form), with
||ϕ||µ = [(ϕ, ϕ)µ]

1/2.  The weak form also then takes on a geometrical
interpretation:  It says that vector  ϕ  is orthogonal to  Φ0, which amounts
to saying  (Fig. 3.2) that point  ϕ  is the orthogonal projection of the origin
on  ΦI.  The relation we have found while proving Prop. 3.1,

(5) F(ψ) = F(ϕ) + F(ψ – ϕ)   ∀ ψ ∈ ΦI,

if  ϕ  is the solution, then appears as nothing but the Pythagoras theorem,
in a functional space of infinite dimension.

Exercise 3.2.  Why the reference to  Φ∗, and not to  Φ ?
This is our first encounter with a functional space:   an affine space,

the elements of which can usually be interpreted as functions or vector
fields, equipped with a notion of distance.  When, as here, this distance
comes from a scalar product on the associated vector space, we have a
pre-Hilbertian space.  (Why “pre” will soon be explained.)  The existence
of this metric structure (scalar product, distance) then allows one to speak
with validity of the “closeness” of two fields, of their orthogonality, of
converging sequences, of the continuity of various mappings, and so forth.
For instance (and just for familiarization, for this is a trivial result), if
we call  ϕ(I)  the solution of (1) or (3), considered as a function of the mmf
I, we have
Proposition 3.2.  The mapping  I → ϕ(I)  is continuous in the energy metric.
Proof.  By (1),  ϕ(I) = I ϕ(1), hence  ||ϕ(I)||µ = |I| ||ϕ(1)||µ, that is,  ||ϕ(I)||µ ≤
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C |I|  for all  I, where  C  is a constant, thus satisfying the criterion for
continuity of linear operators.  ◊
Exercise 3.3.  Show that  J  (notation of Exer. 2.9) is continuous on  Φ∗.

As for the functional point of view, also heralded before, we now have
a good illustration of it:  Having built a functional space of eligible
potentials, we search for a distinguished one, here the orthogonal
projection of the origin on  ΦI.
Remark 3.2.  Once we have this solution  ϕ, then, by the integration by
parts formula,  ∫D µ |grad ϕ|2 = ∫S n · b  ϕ = I ∫Sh

1
 n · b = I 2/R, by definition of

the reluctance  R  (cf.  2.4.1).  So, finding the magnetic coenergy will give
access to  R.  We’ll return to this in Chapter 4 (Subsection 4.1.3).  ◊

3.2  EXISTENCE OF A SOLUTION

After this promising commencement, the bad news:  Problems (1) or (3)
may fail to have a solution.

3.2.1 Trying to find one

Call  d  the distance of the origin to  ΦI, that is,  d = inf{ ||ψ||µ :  ψ ∈ ΦI}.  For
each integer  n, there certainly exists some  ϕn  in  ΦI  such that  ||ϕn||µ ≤ d +
1/n.  (Otherwise,  d  would be lower than the infimum.)  Moreover,  d =
lim n → ∞ ||ϕn||µ.  One says that the  ϕns  form a minimizing sequence, which
we may expect to converge towards a limit  ϕ.  If so, this limit will be the
solution.

Indeed, by developing  ||ϕn ± ϕm||µ
2 = ∫D  µ |grad(ϕn ± ϕm)|2,  we have

||ϕn – ϕm||µ
2 + ||ϕn + ϕm||µ

2 = 2(||ϕn||µ
2 + ||ϕm||µ

2) .

The point  (ϕn + ϕm)/2  belongs to  ΦI, so its distance to 0 is no smaller than
d;  therefore  ||ϕn + ϕm||µ

2 ≥ 4d2, and hence,

(6) ||ϕn – ϕm||µ
2 ≤ 2(||ϕn||µ

2 + ||ϕm||µ
2) – 4d2.

Now, let  n  and  m  tend to infinity;  the right-hand side tends to 0, so
||ϕn – ϕm||µ  tends to 0; this qualifies  {ϕn :  n ∈ IN}  as a Cauchy sequence,
which a converging sequence must be (cf. Appendix A, Subsection A.4.1).

But this necessary condition is not sufficient.  Just as the set of rational
numbers does not contain all the limits of its Cauchy sequences, functional
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spaces which do not contain the limits of their
own abound.  For instance (inset), in the space
of piecewise smooth functions over  [0, 1],
equipped with the norm  || f  || = ∫0

1 |f(x)| dx,
the sequence  f n = x → inf(n, 1/√x)  is Cauchy
(Exercise 3.4 :  prove it), but the would-be limit
x → 1/√x  is not piecewise smooth.  Hence the
necessity of the following definition:

Definition 3.1.  A metric space   X  i s complete if all Cauchy sequences in   X
converge towards an element of  X.

In particular, a complete normed space is called a Banach space, and a
complete pre-Hilbertian space is called a Hilbert space.

If our underlying space  Φ∗  was complete (and then each slice  ΦI,
being closed by Exer. 3.3, would be complete), the above reasoning would
thus establish the existence of a solution to (1) or (3), which we already
know is unique.  But  Φ∗  is not complete, as counterexamples built on the
same principle as in Exer. 3.4 will show.  What this points to, however, is
a failure of our method.  Conceivably, a piecewise smooth solution could
exist in spite of our inability to prove its existence a priori by this
minimizing sequence approach.  One might even be tempted to say, “Never
mind, we know this solution exists on physical grounds, and we shall be
content with an approximation (that is, an element of high enough rank
of some minimizing sequence).  Moreover, didn’t we prove, with this Weyl
lemma, that  ϕ  would be smooth in homogeneous regions?  If so the present
space  Φ, though not complete, is rich enough.  So let’s proceed and focus
on finding a usable approximation.”

Such a stand would not be tenable.  First, there is a logical fallacy:
smoothness was proved, in Chapter 1, but in case the solution exists, which
is what we want to assess.  Besides, you don’t prove something “on physical
grounds”.  Rather, modelling sets up a correspondence between a segment
of reality and a mathematical framework, by which some empirical facts
have mathematical predicates as counterparts.  The truth of such
predicates must be proved within the model , and failure to achieve that
just invalidates the modelling .  So the responsibility of asserting the
existence of a solution to (1) or (3), within this mathematical framework,
is ours.

Alas, not only can’t we prove piecewise smoothness a priori, but we
can build counterexamples, that correspond to quite realistic situations.
We shall display one.
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3.2.2  ΦΦΦΦ∗∗∗∗  is too small

Refer to Fig. 2.6 (recalled in inset), and
imagine the system as so long in the
z–direction that all field lines are in the
x–y  plane, which makes a 2D modelling
feasible.  It is well known that the field
will be infinite at the tips of the “re-
entrant corners”  C  and  C'  with such
geometry.  (This is the same phenomenon
as the “spike effect” in electrostatics.)  By doing Exercises 5 and 6, you
should be able to see why:  An analogue of Problems (1) and (3), in an
appropriately simplified two-dimensional setting, can be solved in closed
form, and its solution exhibits a mild singularity at the origin (which
corresponds to corner  C).  The potential is well-behaved (cf. Fig. 3.6, p.
89), but its gradient becomes infinite at the origin, in spite of the magnetic
coenergy3 being bounded.

This is an idealization, but it points to an unacceptable weakness of
our modelling:  The restriction to piecewise smooth potentials, which
seemed quite warranted, bars the existence of such mild singularities, 4

whereas physics requires they be accounted for, as something that can
happen.  Our space is too small:  The frame is too narrow.

Of course, we could blame this failure on too strict a definition of
smoothness, and revise the latter in the light of new data, contriving to
accept mildly singular fields as “smooth” according to some new, looser
definition.  But first, this kind of “monster-barring” [La] would lead to
even more technical concepts and (likely) to something more esoteric than
the radical solution we shall eventually adopt.  Moreover, it might be
only the beginning of an endless process:  One may easily imagine how
fractal-like boundaries, for instance, could later be invoked to invalidate
our attempts to deal with corners.

The radical (and right) solution is completion:  Having a non-complete
functional space, immerse it into a larger, complete space.  Then the above
method works:  The solution exists, in the completed space, as the limit of

3In such a 2D modelling, the  µ-norm corresponds to the (co)energy contributed by the
region of space lying between two horizontal planes, one unit of length apart.

4Precisely:  the singularity at  0  makes it impossible to extend  ϕ  to a domain that would
contain the origin and where its gradient would be finite, which is required by  1-smoothness
“over”  D, as we defined it.

a minimizing sequence.  (All of them will yield the same limit.)
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3.2.3  Completing  ΦΦΦΦ∗

Completion logically belongs to the mathematical Appendix of this book,
but the idea is so important, and so germane to what physicists do
spontaneously when they define “generalized solutions” to problems which
have no “classical” ones, that it may be worthwhile to discuss it here.

First, note this is not the same thing as closure.  Indeed,  if  A  is a part
of a metric space  {X, d}, sequences which fail to converge in  A  may
converge to an element of its closure, so if  X  is complete, the completion of
A  will be its closure  A ‹.  But there,  A  is already immersed in a pre-existing
metric space.  If such an encompassing complete space does not yet exist,
we can’t proceed that way.
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FIGURE 3.3.  The idea of completion.  X Ó  is an abstract space:  its elements are of a
different type that those of  X.  But there is a natural injection of  X  into  X Ó, so the
process can be seen, very informally, as “plugging the holes” in  X.

The idea (Fig. 3.3) conforms with the usual method for building new
mathematical objects from old ones:  define equivalence relations (cf. A.1.6) ,
and take equivalence classes.  This is how, one will remember, rational
numbers are built from pairs of integers, and real numbers from sequences
of rationals.  Completion is quite analogous to the construction of  IR  in
this respect.  Suppose  {X, d}  is a metric space, that is, a set  X  equipped
with a distance  d.  Let  X°  be the set of all Cauchy sequences in  X.  Two
elements of  X°, say  x°= {x 1, x2, . . ., xn, . . . } and  y°= { . . . , yn, .  . . } , will be
deemed equivalent if  lim  n → ∞  d(xn, y n) = 0  (Fig. 3.3).  That is easily seen
to be an equivalence relation, under the hypothesis that we are dealing
with Cauchy sequences.  We thus consider the quotient  X Ó, we give it a
distance,  dÓ( x , y ) = lim n → ∞  d(x n, y n), where  {xn}  and  {y n}  are representa-
tives of the classes  x   and  y , and we define the newly found metric
space  {X Ó, d Ó}  as the completion of  X.  This is a bold move, for the elements
of  XÓ, being sets of sequences of elements of  X, seem of a completely different
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nature than those of  X.  But there is a natural way to inject  X  into  XÓ :
to  x ∈ X, associate the class  x  = i(x)  of the constant sequence  x° =
{x, x, . . . , x, . . . } .  This way,  XÓ  appears as an extension of  X  (note that  dÓ

restricts to  d  on the image  i(X)  of  X  under the injection  i).  Moreover, as
proved in A.4.1,  {XÓ, d Ó}  is complete, and  X, or rather its image  i(X), is
dense in  XÓ.

This mechanism does not guarantee that the completion of a functional
space will be a functional space:  its elements being equivalence classes of
sequences of functions, some of these classes might not be identifiable5

with any classically defined function.  As a rule, one must invoke other
mathematical theories to establish the functional nature of the elements
of the completion—when such is the case.

The classical example is  L2(D), the prototypal Hilbert space:  L2(D)
is defined as the completion of6  C 0

∞(D)  with respect to the norm  ||f || =
(∫D |f|2)1/2.  A central result of Lebesgue integration theory, then, is that
L2(D)  coincides with the space of square-integrable functions over  D, or
rather, of equivalence classes of such functions, with respect to the
“a.e. =” relation (equality except on a negligible set).  If this sounds complex,
it’s because it really is .  . . (see Appendix A, Subsection A.4.2).   Fortunately,
this complexity can be circumscribed, and once in possession of  L2(D), and
of its analogue  IL2(D)  (square integrable vector fields), completion is an
easy task, as we shall see later.

Completion corresponds to a very natural idea in physics.  Many
problems are idealizations.  For instance, there is no such thing in nature
as a sharp corner, but the sharp corner idealization helps understand what
happens near a surface with high curvature.  In this respect, the whole
f a m i l y of solutions, parameterized by curvature, contains information that
one solution for a finite curvature would fail to give.  This information is
summarized by the singular solution, which belongs to the completion,
because an element of the completion i s, in the sense we have seen, a sequence

5This is no hair-splitting:  For instance, the completion of  C 0
∞(E2)  with respect to the

norm  ϕ → (∫Ε2 |grad ϕ|2)1/2  is not a functional space, not even a space of distributions [DL].
Still, this Beppo Levi space is home to electric or magnetic potentials in 2D problems.  This
reflects the intrinsic difficulty of dimension 2, for in 3D, Beppo Levi’s space is functional,
being continuously injectable in the space  L 6(E3)  of functions with integrable sixth power.
We’ll see that in Chapter 7.

6Note that, since a space is dense in its completion, spaces in which  C0
∞(D)  is dense,

with respect to the same quadratic norm, have the same completion.  So we would obtain the
same result,  L 2(D), by starting from  C1(D‹), or  C 0(D‹), or for that matter, from the space of
piecewise smooth functions over  D.

of smooth solutions.
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A little more abstractly, suppose the problem has been cast in the
form  Ax = b, where  b  symbolizes the data,  x  the solution, and  A  some
mapping of type  SOLUTION → DATA.  Solving the problem means, at a
high enough level of abstraction, finding 7 the inverse  A–1, which may
not be defined for some values of  b  (those corresponding to sharp corners,
let’s say, for illustration).  But if there is a solution  xn  for each element
bn  of some sequence that converges toward  b, it’s legitimate to define the
limit  x = lim n → ∞ xn  as the solution, if there is such a limit, and  if there
isn’t, to invent one.   That’s the essence of completion.  Moreover, attributing
to  Ax  the value  b, whereas  A  did not make sense, a priori, for the
generalized solution  x, constitutes a prolongation of  A  beyond its initial
domain, a thing which goes along with completion (cf. A.2.3).  Physicists
made much mileage out of this idea of a generalized solution, as the
eventual limit of a parameterized family, before the concepts of modern
functional analysis (complete spaces, distributions, etc.) were elaborated
in order to give it status.

Summing up:  We now attribute the symbol  Φ∗  to the completion of
the space of piecewise smooth functions in  D, null on  Sh

0  and equal to
some constant on  Sh

1,  with respect to the norm  ||ϕ||µ = [∫D µ |grad ϕ|2]1/2.
Same renaming for  ΦI  (which is now the closure of the previous one in
Φ∗).  Equation (1), or Problem (3), has now a (unique) solution.  The next
item in order8 is to solve for it.

3.3  DISCRETIZATION

But what do we mean by that?  Solving an equation means being able to
answer specific questions about its solution with controllable accuracy,
whichever way.  A century ago, or even more recently in the pre-computer
era, the only way was to represent the solution “in closed form”, or as the
sum of a series, thus allowing a numerical evaluation with help of formulas
and tables.  Computers changed this:  They forced us to work from the

7An unpleasantly imprecise word.  What is required, actually, is some representation of
the inverse, by a formula, a series, an algorithm . . .  anything that can give effective access to
the solution.

8Whether Problem (3) is well posed (cf. Note 1.16) raises other issues, which we temporarily
bypass, as to the continuous dependence of  ϕ  on data:  on  I  (Prop. 3.2 gave the answer), on
µ  (cf. Exers. 3.17 and 3.19), on the dimensions and shape of the domain (Exers. 3.18 and
3.20).

outset with f inite representations.  Eligible fields and solutions must
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therefore be parameterized, with a perhaps very large, but finite, number
of parameters.

3.3.1  The Ritz–Galerkin method

Suppose we have a finite catalog of elements of  Φ,  {λi :  i ∈ J }, often
called trial functions, where  J  is a (finite) set of indices.  Each  λi  must be
a simple function, one which can be handled in closed form.  If we can find
a family of real parameters  {ϕϕϕϕi :  i ∈ J }  such that  ∑ i ϕϕϕϕi λ

i  is an approximation
of the solution, this will be enough to answer questions the modelling was
meant to address, provided the approximation is good enough, because all
the data-processing will be done via the  λis.  The parameters  ϕϕϕϕi  (set in
bold face) are called the degrees of freedom (abbreviated as DoFs or DoF,
as the case may be) of the field they generate.  We shall denote by  ϕϕϕϕ,
bold also, the family  ϕϕϕϕ = {ϕϕϕϕi :  i ∈ J} .

The Ritz–Galerkin idea consists in restricting the search for a field of
least energy to those of the form  ∑ i ∈ J ϕϕϕϕi λ

i  that belong to  ΦI.  The catalog
of trial functions is then known as a Galerkin basis.  (We shall say that it
defines an approximation method , and use the subscript  m  to denote all
things connected with it, when necessary;  most often, the  m  will be
understood.)  This is well in the line of the above contructive method for
proving existence, for successive enlargements of the Galerkin basis will
generate a sequence with decreasing energy, and if, moreover, this is a
minimizing sequence, the day is won.

To implement this, let us introduce some notation:  Φm  is the finite
dimensional space of linear combinations of functions of the catalog, that
is to say, the space spanned by the  λis, and we define

(7) ΦI
m = Φm ∩ ΦI,        Φ0

m = Φm ∩ Φ0.

The approximate problem is thus:

(8)  Find  ϕm ∈ ΦI
m  such that   F(ϕm) ≤ F(ψ)   ∀ ψ ∈ ΦI

m .

This problem has a solution (by the compactness argument of A.2.3),
since we are considering here a positive definite quadratic form on a f inite-
dimensional space.  If in addition we assume that  ΦI

m  and  Φ0
m  are

parallel, just as  ΦI  and  Φ0  were in Fig. 3.2 (this is not automatic, and
depends on a sensible choice of trial functions), then (8) is equivalent, by
exactly the same reasoning we made earlier, to the following
Euler equation:
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(9) Find  ϕm ∈ ΦI
m  such that   ∫D µ grad ϕm · grad ϕ' = 0   ∀  ϕ' ∈ Φ0

m.

This parallelism condition is usually easy to achieve:  It is enough that
some specific combination  ϕI

m = ∑ i ϕϕϕϕi
I
 λ

i  satisfy  ϕI
m

  = 0  on  Sh
0  and  ϕI

m = I
on  Sh

1.  If necessary, such a function will be built on purpose and added to
the list of trial functions.  Now all functions of  ΦI

m  are of the form
ϕI

m  + ϕ  with  ϕ ∈ Φ0
m , which we can write in compact form like this:

(10) ΦI
m = ϕI

m + Φ0
m.

In words:  ΦI
m  is the translate of  Φ0

m   by vector  ϕI
m  (Fig. 3.4).

It would now be easy to show that (9) is a regular linear system .  The
argument relies on uniqueness and on the equality between the number of
unknowns (which are the degrees of freedom) and the number of equations
in (9), which is the dimension of  Φ0

m  (cf. Exer. 2.7).  We defer this,
however, as well as close examination of the properties of this linear
system, till we have made a specific choice of trial functions.

0

ϕ

Φ 0

Φ I

Φ∗

Φm
ϕm

rm ϕ Φ I
m

Φ 0
m

ϕI
m

FIGURE 3.4.  Geometry of the Ritz–Galerkin method.

Problem (9) is called the “discrete formulation”, as opposed to the
“continuous formulation” (1).   Both are in weak form, but (9) is obviously
“weaker”, since there are fewer test functions.  In particular, the weak
solenoidality of  b = µ grad ϕ  has been destroyed by restricting to a f inite
set of test functions.  The span of such a set cannot be dense in  Φ0, so the
proof of Prop. 2.3 is not available, and we can’t expect Eqs. (2.23) and
(2.24) in Chapter 2 (about  div b = 0  and  n · b = 0) to hold for  bm =
µ grad ϕm.  Still, something must be preserved, which we shall call, for
lack of a better term, “m-weak solenoidality 9 of  b” and “m-weak
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enforcement of the  n · b   boundary condition” on  Sb.  This also will wait
(till the next chapter).

Meanwhile, it’s interesting to examine the geometry of the situation
(Fig. 3.4).  The figure suggests that  ϕm, which is the projection of  0  on
ΦI

m, is also the projection of  ϕ  (the exact solution) on  ΦI
m.  This is correct:

To see it, just restrict the test functions in (1) to elements of  Φ0
m, which we

have assumed (cf. (7)) are contained in  Φ0, which gives

∫D µ grad ϕ . grad ϕ' = 0   ∀ ϕ' ∈ Φ0
m .

But by (9) we also have

∫D µ grad ϕm . grad ϕ' = 0   ∀ ϕ' ∈ Φ0
m ,

therefore, by difference,

(11) ∫D µ grad(ϕm – ϕ) · grad ϕ' = 0   ∀ ϕ' ∈ Φ0
m ,

which expresses the observed orthogonality.
The figure also suggests a general method for error estimation.  Let

rmϕ  be an element of  ΦI
m  that we would be able to associate with  ϕ, as an

approximation, i f we knew it.  Then we have, as read off the figure, and
proved by setting  ϕ' = ϕm – rmϕ  in (11),

||ϕ – ϕm ||µ ≤ ||ϕ – rmϕ ||µ

(rmϕ  is farther from  ϕ, in energy, than  ϕm  is).  So if we are able somehow
to bound  ||ϕ – rmϕ||µ, an error bound on  ϕm – ϕ  will ensue.  The potential of
the idea for error control is obvious, and we whall return to it in Chapter
4, with a specific Galerkin basis and a specific  rm.

The Ritz–Galerkin method is of surprising efficiency.  If trial functions
are well designed, by someone who has good feeling for the real solution,
a handful of them may be enough for good accuracy in estimating the
functional.  But it’s difficult to give guidelines of general value in this
respect, especially for three-dimensional problems.  Besides, the computer
changed the situation.  We can afford many degrees of freedom nowadays
(some modern codes use millions [We]) and can lavish machine time on
the systematic design of Galerkin bases in a problem-independent way:

9The terminology is hesitant:  Some say these equations are approximately satisfied “in
the sense of weighted residuals”, or “in the weak sense of finite elements”, or even simply “in
the weak sense”, which may induce confusion.  “Discrete” solenoidality might be used as a
more palatable alternative to “m-weak” solenoidality.

This is what finite elements are about.
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3.3.2  Finite elements

So let be given a bounded domain  D ⊂ E3  with a piecewise smooth boundary
S, and also inner boundaries, corresponding to material interfaces
(discontinuity surfaces of  µ, in our model problem).

A finite element mesh  is a tessellation of  D  by volumes of various
shapes, but arranged in such a way that two of them intersect, if they do,
along a common face, edge, or node,10 and never otherwise.  We shall
restrict here to tetrahedral meshes, where all volumes have six edges
and four faces, but this is only for clarity.  (In practice,
hexahedral meshes are more popular. 11)  Note that a
volume is not necessarily a straight tetrahedron, but may
be the image of some “reference tetrahedron” by a smooth
mapping  u  (inset). 12  This may be necessary to fit curved
boundaries, or to cover infinite regions.  Usually, one also
arranges for material interfaces to be paved by faces of
the mesh.

Exercise 3.7.  Find all possible ways to mesh a cube by
tetrahedra, under the condition that no new vertex is added.

Drafting a mesh for a given problem is a straightforward, if tedious,
affair.  But designing mesh generators  is much more difficult, a scientific
specialty [Ge] and an industry.  We shall not touch either subject, and our
only concern will be for the output of a mesh-generation process.  The mesh
is a complex data structure, which can be organized in many different
ways, but the following elements are always present, more or less directly:
(1)  a list of nodes of the mesh, pointing to their locations;  (2)  a list of
edges, faces, and volumes, with indirections allowing one to know which
nodes are at the ends of this and that edge, etc.;  (3)  parameters describing
the mapping of each volume to the reference one;  (4)  for each volume,
parameters describing the material properties (for instance, the average
value of  µ, in our case).

For maximum simplicity in what follows, we assume that all volumes
are straight tetrahedra.  This can always be enforced, by distorting  D  to

10Or vertex.  For some, “vertex” and “node” specialize in distinct meanings, vertices
being the tips of the elementary volumes, and nodes the points that will support degrees of
freedom.  This distinction will not be made here.

11Most software systems offer various shapes, including tetrahedra and prisms, to be
used in conjunction.  This is required in practice for irregular regions.

12A more precise definition will be given in Chapter 7.

a polyhedron with plane faces, which is then chopped into tetrahedra. 

u    .
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(This changes the model a little, of course, and adds some error to the
approximation error inherent in the finite element method.)

We shall use the following simple description of the mesh:  (1)  four
sets, denoted  N, E, F, T, for nodes, edges, faces, and tetrahedra;  (2)
incidence relations, on which more below;  (3)  the placement of the mesh:
this is a function  n → xn, from  N  to  D‹, giving for each node  n  its position
xn  in  D  or on  S.  In the case of straight tetrahedra, this is enough to
determine the location of all simplices (the generic name for node, edge,
face, etc.), and no other placement parameters are needed.

Thanks to this placement, one can confuse under a single expression,
for example, “tetrahedron  T”, two conceptually different things:  here
the element  T  of  T, which is a mere label, and the tetrahedron  T, a part
of  D, which is its image under the placement.  It’s a convenient and not
too dangerous abuse, 13 which I’ll commit freely, for all simplices.  Symbols
F(e),  N(T),  and other similar ones, will stand for, respectively, the subset
of all faces that contain edge  e, the subset of all nodes that are contained
in tetrahedron  T, and other similar subsets for various simplices.  The
purpose of the incidence relations, which we shall wait until Chapter 5
to describe in full detail, is to point to the faces of a given tetrahedron,
the edges of a given face, etc., and thus to give full knowledge of subsets
like  F(e)  or  N(T) .  Finally, we shall denote by  Dn  the subdomain of  D
obtained by putting together all tetrahedra of the subset  T(n), and use
similar notation for  De  and  Df , calling  D s  the cluster of tetrahedra
around simplex  s  (Fig. 3.5).  (No attempt is made to distinguish between
open and closed clusters, as that will be clear from context.)

n e
f T

FIGURE 3.5.  Clusters of tetrahedra around simplex  s  (s  being, from left to right,
node  n, edge  e, face  f, and tetrahedron  T).  For better view, faces containing the
simplex are supposed to be opaque, and others transparent.

Let’s now recall the notion of barycentric coordinates.  Four points  x1,
x2, x3, x4  in three-dimensional space are in generic position  if the

13Mathematicians use  s  for the simplex as an algebraic object and  |s|  for its image.

determinant  det(x2 – x 1, x3 – x1, x 4 – x1)  does not vanish.  In that case,  they
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form a tetrahedron.  Four real numbers  λ1, λ2, λ3, λ4  such that  ∑i λ
i = 1

determine a point  x, the barycenter of the  xis  for these weights, uniquely
defined by

(12) x – x0 = ∑ i = 1, 4  λ
i (xi – x0) ,

where  x0  is any origin (for instance, one of the  xis).  Conversely, any point
x  has a unique representation of the form (12), and the weights  λi,
considered as four functions of  x, are the barycentric coordinates  of  x  in
the affine basis provided by the four points.  Note that  x  belongs to the
tetrahedron if  λi(x) ≥ 0  for all  i.  The  λis  are affine functions of  x.
Remark 3.3.   Consequently, a function  p  which is polynomial with respect
to the three Cartesian coordinates can be expressed as a polynomial
expression  x → P(λ1(x), .  . . , λ

4(x))  of the barycentric coordinates, where
P  is another polynomial, of the same maximum degree  as  p, with four
variables.  This possibility is often used, usually without warning.  ◊

Now, consider our paving of  D‹  by tetrahedra.  To each node  n  of the
mesh, let us attribute a function, defined as follows:  Its value at point  x
is  0  if the cluster  D n  does not contain  x, and if it does, it is the barycentric
coordinate of  x  with respect to  n, in the affine basis provided by the
tetrahedron to which  x  belongs.  (There is no ambiguity in that, because
if  x  belongs to a simplex  s, and thereby, to all tetrahedra of the cluster
of  s, its barycentric coordinates with respect to vertices of  s  are all the
same, whatever the tetrahedron one considers to reckon them.)  We shall
reattribute to this nodal function  the symbol  λn.  Note that, by construction,
λn(x) ≥ 0, its support is  D‹n, its domain is  D‹  (but doesn’t go beyond), and

(13) ∑ n ∈ N  λ
n(x) = 1  for all  x ∈ D‹.

The  λns  themselves are often called
“barycentric coordinates”, though
they coincide with the previous  λis
only for the nodes around  x.  This abuse
is harmless, but I’ll stick to “nodal
functions”, notwithstanding.

A shorter way to describe them is
to say:  λn  is the only piecewise affine
function14 that takes the value  1  at node  n  and  0  at all other nodes.

14 Meaning:  affine by restriction to each tetrahedron.  I will use “ mesh-wise” in such
cases:  mesh-wise affine, mesh-wise quadratic, etc. (this is not standard terminology).

The inset shows the pattern of level lines of  λn  in the 2D case (triangulation
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0
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of a plane domain  D).  It is easy from this to imagine the graph of the
corresponding function, and to understand why the  λns  are often called
“hat functions”.

Exercise 3.8.  Prove that the hat functions are linearly independent.
Exercise 3.9.  Compute the average of  λn  over  (1)  an edge  e,  (2)  a face  f,
(3)  a tetrahedron  T, all containing  n.

Remark 3.4.  Two things are essential in this construction:  (1)  each  λn  is
supported on the cluster of  n,  (2)  they form a partition of unity over  D,
i.e.,  ∑ n ∈ N  λ

n = 1, relation (13).  The affine character is secondary, and is
lost in case of curved tetrahedra.15  But it considerably simplifies the
programming, in conjunction with Remark 3.3, as we’ll see.  ◊

Well, that’s all:  The finite element method is the Ritz–Galerkin
method, the basis functions being a partition of unity associated with a
mesh, as above.

There are many ways to devise such a partition of unity, and the use
of barycentric functions is only the simplest.  When one refers to “a” finite
element, it’s this whole procedure one has in mind, not only the analytical
expression of the basis functions.  However, the latter suffices in many
cases.  Here, for instance, the restrictions of the  λns  to individual
tetrahedra are affine functions, that is, polynomials of maximum degree
1 of the Cartesian coordinates (one calls them “P1  elements” for this reason),
and this is enough characterization.16

Let us give another example, which demonstrates the power of this
notation.  What are “P 2  elements”?  This means functions with small
support, like the above  λns, which restrict to each tetrahedron as a second-
degree polynomial, and therefore (Remark 3.3) are in the span of the
products  λnλm.  This is enough to point to the partition of unity, for the set
{λnλm :   n ∈ N ,  m ∈ N  }  is perfect in this respect:  we do have

∑ n, m ∈ N  λn λm = ∑ n ∈ N [λn (∑ m ∈ N  λm )] = ∑ n ∈ N  λ
n = 1

after (13), and the support of  λn λm  is either the cluster of  n, if  n = m, or

15What is affine, then, is the “pull-back” of  λn  onto the reference tetrahedron.  For this
notion, push a little forward (Note 7.9).

16There is in finite element theory a traditional distinction between “basis functions”, like
the  λn, and “shape functions”, which are their restrictions to mesh volumes.  As one sees
here, shape functions are more simply characterized.  Theory, on the other hand, is easier in
terms of basis functions.

the cluster of edge  n  to  m, if  n  and  m  are neighbors (the inset, next page,
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shows the level lines of  λn λm).  Note how the coefficients  ϕϕϕϕn m  in the
expansion  ϕ = ∑ n, m ϕϕϕϕn m λ

n λm  are determined by the values of  ϕ  at the
nodes and the mid-edges (Exer. 3.11).
Exercise 3.10.  Compute the averages of
λn λm  and  λn λm λl  on a tetrahedron, in
all cases,  n ≠ m,  n = m, etc.

Exercise 3.11.  Devise a set of  P2  functions
wmn  such that  w mn = 1  at the middle of
edge  {m, n}, or at node  n  if  n = m, and  0
at all other nodes and mid-edges.
Exercise 3.12 (Gaussian quadrature
formulas).  The average of an affine
function over a tetrahedron is the
average of its nodal values.  The average of a quadratic function is a
weighted average of its nodal and mid-edge values.  Which weights?
What about triangles?

Finite elements with degrees of freedom attached to specific points
(cf. Note 10), like the  P1  and  P2  elements, are called Lagrangian [CR].
There are other varieties, built on hexahedra or other shapes, or with
derivatives as DoFs (those are Hermitian elements), and so forth.   Refer
to specialized books such as [Ci].  There are also vector-valued finite
elements, to which we shall return in Chapters 5 and 6.

3.3.3  The linear system

Generated by these basis elements, the finite dimensional subspace  Φm
contains all functions of the form

(14) ϕ = ∑ n ∈ N ϕϕϕϕn λ
n.

There is one degree of freedom  ϕϕϕϕn  for each node  n, equal to the value of  ϕ
at node  n.  The family  ϕϕϕϕ = {ϕϕϕϕn :  n ∈ N  }  can be construed as a vector of an
N-dimensional space, where  N = #N   is the number of nodes in the mesh.
We shall denote this vector space by  ΦΦΦΦm  (and drop the  m, which can be
done without any risk of confusion while we are dealing with one mesh at
a time).  Of course  Φm  and  ΦΦΦΦ  are isomorphic, but they are objects of
different kinds, and we shall keep the difference in mind.  To stress it, let
us call  pm  the injective map from  ΦΦΦΦ  into  Φ  defined by (14), which sends
ϕϕϕϕ  to  ϕm = pm(ϕϕϕϕ).  Then,  Φm = pm(ΦΦΦΦ).  Similar notation will be used throughout,
with capitals for spaces, and boldface connoting degrees of freedom and

n

m
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1/16
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the vector spaces they span.  In particular, we shall denote with bold
parentheses the Euclidean scalar product of two elements of  ΦΦΦΦ, like this:

(15) (ϕϕϕϕ, ϕϕϕϕ') = ∑ n ∈ N ϕϕϕϕn ϕϕϕϕ' n.

To introduce  ΦI
m, first call  N  ( Sh)  the set of all boundary nodes that

belong to  Sh, including those on the frontier between  Sh  and  Sb.  Formally,
N( Sh) = {n ∈ N  :  xn ∈ cl(Sh)}, where  cl  stands for the closure relative to  S.
Let  N( Sh

0)  and  N( Sh
1)  similarly be defined.  Then, define

(16) ΦΦΦΦI = {ϕϕϕϕ ∈ ΦΦΦΦ :  ϕϕϕϕn = 0  if  n ∈ N( Sh
0),  ϕϕϕϕn = I  if  n ∈ N( Sh

1) }

and, similarly,  ΦΦΦΦ0, two parallel subspaces of  ΦΦΦΦ.  Finally, let us set

(17) Φ0
m = pm(ΦΦΦΦ0),    ΦI

m = pm(ΦΦΦΦI) .

Relation (10),  ΦI
m = ϕI

m + Φ0
m , has a counterpart here.  Let us construct  ϕϕϕϕ1,

a special vector, with all components  ϕϕϕϕ1
n = 0  except for  n ∈ N ( Sh

1), where
they are set to 1.  Then, with  ϕϕϕϕI  defined as  ϕϕϕϕI  = I ϕϕϕϕ1,

(18) ΦΦΦΦI = ϕϕϕϕI + ΦΦΦΦ0.

Remark 3.5.  If you try to check (7) at this stage, you will see that it fails
if the faces at the boundary do not fit it exactly.  Cf. the inset:  a piecewise
affine function that vanishes at  n  and  m, but not
at  l, cannot be zero at  x.  Because of this tiny
difference,  ΦI

m  is not contained in  ΦI, and applying
the geometrical reasonings suggested by Fig. 3.4
would be a “variational crime”, in the sense of
Strang and Fix [SF].  This (jocular) charge should
not deter anyone from using a mesh similar to the
one in inset in case of a curved boundary.  This is perfectly right!  What is
not, and would constitute the crime, would be to apply the simple
convergence proof that will follow to such a situation, which calls for
more cumbersome treatment.  Thanks to our decision to deform  D  into a
polyhedron before meshing, we do have  ΦI

m = Φm ∩ ΦI  and  Φ0
m =

Φm ∩ Φ0, as announced in (7).  But this will not be effectively used before
we address convergence and error analysis, and what immediately follows
does not depend on the truth of these assertions.  ◊

We want now to interpret problem (9), that is,

(9') f ind  ϕm ∈ ΦI
m  such that   ∫D µ grad ϕm · grad ϕ' = 0   ∀ ϕ' ∈ Φ0

m ,

in algebraic terms.  Since  ΦI
m = pm(ΦΦΦΦI), this is a linear system with respect

n m

x

l

S

D
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to the “free” degrees of freedom, that is, those not constrained by (16),
which are the nodes of the subset  N 0 = N – N( Sh).  On the other hand,
since  Φ0

m  is parallel to  ΦI
m , there are as many equations as unknowns in

(9').  Our aim is to rewrite (9') in terms of the degrees of freedom.  For
this, let us set, for any two nodes  n  and  m,

(19) Mn m = ∫D µ grad λn · grad λm,

and form the symmetric matrix  M, indexed on  N   × N , of which this is
the entry at row  n  and column  m.  Then (just write  ϕm  and  ϕ' as in (14),
and expand), (9') is equivalent to

(9'') f ind  ϕϕϕϕ ∈ ΦΦΦΦI
m  such that   (Mϕϕϕϕ, ϕϕϕϕ') = 0   ∀ ϕϕϕϕ' ∈ ΦΦΦΦ0,

via the correspondence  ϕm = pm(ϕϕϕϕ).  As a matter of course (we did that
twice already), this is equivalent to the variational problem

(9'' ') f ind  ϕϕϕϕ ∈ ΦΦΦΦI  such that  F(ϕϕϕϕ) ≤ F(ψψψψ)   ∀ ψψψψ ∈ ΦΦΦΦI,

where  F(ϕϕϕϕ) = 1
2 (Mϕϕϕϕ, ϕϕϕϕ).

M  is traditionally dubbed the stiffness matrix of the problem, because
of the origins of the finite elements method:  In mechanics, the analogue
of our  ϕϕϕϕ  is most often a displacement vector, and  F(ϕϕϕϕ)  is deformation
energy, so  Mϕϕϕϕ  is a force vector, and a force-to-displacement ratio is a
stiffness.  (One could make a case for admittance matrix, in our context.)

As a last step, let us write  M  in block form, by partitioning the indexing
set  N   as17  N = N0 + N  ( Sh).  With ad-hoc but obvious notation,

             
M =

M
00

M
01

M11M10
,

where the submatrix  00M  is indexed over  N 0  and thus operates in the
subspace  ΦΦΦΦ0  of genuine unknowns (those not constrained by essential
boundary conditions).  We also write vectors in block form,  ϕϕϕϕ = { 0ϕϕϕϕ, 1ϕϕϕϕ} ,
and  ϕϕϕϕI = {0, 1ϕϕϕϕI}.  Thanks to this and to (18), we see that (9") is equivalent
to find  0ϕϕϕϕ ∈ ΦΦΦΦ0  such t h a t

(20) 00M 0ϕϕϕϕ = – 01M 1ϕϕϕϕI,

at last a standard linear system, since the right-hand side  – 01M 1ϕϕϕϕI  is

17The union sign  ∪  is replaced by  +  when sets are disjoint, as here.

known.
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3.3.4  “Assembly”, matrix properties

Methods to effectively solve this linear system are beyond our scope.  One
may refer to many excellent handbooks for this, among which are [Cr, GL,
Gv, Va].  The choice of methods, however, strongly depends on the structure
and properties of  00M, so we need a few indications on this.  And of course,
we must address the practical problem of computing the entries (19).

Let us say from the outset that it’s not a good idea to concentrate on
the “useful” matrix  00M  of (20), thus forgetting about  M, for two reasons.
First, the properties of  M  are simpler to discover, and those of its principal
submatrices (i.e., diagonal sub-blocks), like  00M, easily follow.  Next, the
boundary conditions one wishes to consider may change during the study
of a given problem, thus changing the set  N 0.  Finally, as we shall see in
the next chapter, some data one wishes to access require the knowledge of
all  M.

The first concern is for the computation of the entries of  M.  With  ∇
standing for  grad  for shortness, let us define (cf. (19))

MT
n m = ∫T  µ ∇ λn · ∇ λm,

so that  Mn m = ∑  T ∈ T MT
n m

.  If one replaces  µ  by its
average  µ(T)  over the tetrahedron, this is easy to
compute, as we now show.

Call  {k, l, m, n}  the vertices of  T , and suppose for definiteness they
are placed as shown in inset, vectors18  kl, km, kn  forming a positively
oriented frame.  Notice that  |kl × km|/2  is the area of face  {k, l, m}  and
1/|∇λn|  the height of the tetrahedron above that face, which results in
∇λn = (kl × km)/(6 vol(T) ).  Now,

(21) ∫T  ∇ λn · ∇ λm = 1
36 vol(T)

 (kl × km) · (ln × lk )

                  = 1
36 vol(T)

[ (kl · ln) (lk · km) + |kl|2  km · ln]

by a well-known formula19 (which shows, incidentally, that the result is
insensitive to the orientation of  T).  There is another expression for (21),
known as the cotangent formula , which gives useful insight.  The dot

18A symbol like  km  denotes the vector from point  xk  (the location of node  k) to point
xm.  This is a gross abuse of notation, but an innocuous one.

19 (a × b) · (c × d) = (a · c ) ( b · d) – (a · d) (b · c).

product of   ∇λn  and  ∇λm  is  – (1/am)(1/an) cos θ, with the notation given

l

k

n              .

m .
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in inset  (a  for “altitude”), and  vol(T) =
an d  |kl|/6.  But  am = d sin θ, where  d  is the
distance from  m  to the line supporting  kl,
and thus,

     ∫T  ∇ λn · ∇ λm

= – an |km||kl| cos θ/(6 aman)

= – 1
6 |kl| cot θ.

Adding all contributions, we thus have, with ad-hoc and obvious notation,

(22) Mn m = ∫D µ ∇ λn · ∇ λm

         = – 1
6   ∑ T ∈ T ({n, m})  µ(T) |kl|T cot θΤ .

In dimension 2 (notation in inset), this reduces to

(23) Mn m = – 1
2  ( µ(T) cot θ +  µ(T') cot θ' ) .

Remark 3.6.  Diagonal entries  Mn n  cannot be obtained by this formula, but
since  ∇λn = – ∑  m ≠ n ∇λm, one has  ∑ m Mn m = ∑  m ∫D µ grad λn · grad λm =
∫D µ grad λn · grad(∑ m λm) = 0, hence  Mn n  = – ∑ m ≠ n Mn m , and also  MT

n n =
– ∑ m ≠ n M

T
n m  by summing over  T  instead of  D.  So (22) is enough.  ◊

Since the data structure gives access to the node locations, and hence
to the components of the edge vectors, the simplest programming is via
(21), which requires no more than coding a handful of determinants (the
volume itself is  |det(kl, km, kn)|/6).  This will be the basic subroutine
for the assembly program.  Running it for all pairs of nodes gives the
“elementary matrix”  MT  and then  M = ∑ T ∈ T MT  by looping over the
tetrahedra.  This is the assembly process, by which the matrix is
constructed from the mesh data structure.

This way, only terms which do contribute to the matrix are evaluated.
A priori, of course,  Mn m  = 0  for pairs of nodes which are not linked by a
common edge, that is, most of them:  M  is sparse, that is to say, has a
small percentage of nonzero entries.  This has consequences, also, on the
way these entries are stored (the precise coding of the assembly depends
on options taken at this level) and on the algorithms for solving the linear
system [BR, GL].

This sparsity is perhaps the most important property of finite-element
matrices.  (The Galerkin method generates full matrices, unless the supports
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of the basis functions are small, which is precisely what finite elements
achieve.)  Other properties we now list are not specific to finite elements,
but depend on the “partition of unity” feature (the equality  ∑ n ∈ N λn = 1).
For shortness,  1  will denote the vector of  ΦΦΦΦ  all components of which are
equal to 1, and  Ì{ϕϕϕϕ, ψψψψ, .  . .}  the span of a family of vectors  ϕϕϕϕ,  ψψψψ, . . .  (cf. 
A.2.2).

Proposition 3.3.   M  is symmetric, and nonnegative definite, that is (cf.
Section B.1),

(Mϕϕϕϕ, ϕϕϕϕ) ≥ 0  ∀ ϕϕϕϕ.

Proof.  (Mϕϕϕϕ, ϕϕϕϕ) = ||p(ϕϕϕϕ) ||µ
2 ≡ ∫D µ |grad p(ϕϕϕϕ)|2 ≥ 0.  ◊

Proposition 3.4.  ker(M) = Ì{1} .
Proof.  We already know that  M 1 = 0  (Remark 3.6).   Conversely, if  Mϕϕϕϕ =
0, then  (Mϕϕϕϕ, ϕϕϕϕ) = 0, hence  grad p(ϕϕϕϕ) = 0, hence  p(ϕϕϕϕ) = c, a constant, and
∑ n (ϕϕϕϕn – c) λn = 0, hence  ϕϕϕϕ = c 1, if the  λns  are independent, which we know
is the case for hat functions, by Exer. 3.8.  ◊

Exercise 3.13.   If  M  is symmetric and nonnegative definite, show that
ker(M), which is defined as  {ϕϕϕϕ :  Mϕϕϕϕ = 0}, is equal to  {ϕϕϕϕ :  (Mϕϕϕϕ, ϕϕϕϕ) = 0}.

Proposition 3.5.  Apart from  M  itself, all principal submatrices of  M  a r e
positive definite (cf. Section B.1), and hence regular.
Proof.  Let  N0  be a part of  N, and consider a block partitioning of  M  on
the basis of the  N = N0 + (N – N0)  partitioning of the node set.  To avoid
vertical displays, let us write this  M = {{ 00M, 01M}, { 10M, 11M}}, by rows of
blocks, according to the standard convention.  Then  00M  is (by definition)
a principal submatrix of  M.  Suppose there is a vector  0ϕϕϕϕ, supported on
N

 0
, such that  (00M 0ϕϕϕϕ, 0ϕϕϕϕ) = 0, and build from it a vector  ϕϕϕϕ  supported on

all  N   by attributing the value  0  to all DoFs in  N – N 0.  Then  (Mϕϕϕϕ, ϕϕϕϕ) =
0, which we know implies  ϕϕϕϕ = c 1.  But if  N0 ≠ N , then some components of
ϕϕϕϕ  vanish, hence  c = 0, and  0ϕϕϕϕ = 0.  Then, by the result of Exercise 3.13,  00M
is regular.  ◊

A particular case is when  N0  reduces to one node  n, showing that  Mnn
> 0.  So all diagonal coefficients of  M  are positive, and the sum of entries
of a same row, or column, is zero, by Prop. 3.4.

Now, a property which is more closely linked with the use of
barycentric functions.  Formula (22) shows that in case of acute dihedral
angles, all off-diagonal entries are nonpositive.  Symmetric positive
definite matrices with  ≤ 0  off-diagonal coefficients are called Stieltjes
matrices [Va] and are important because of the following property:
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Proposition 3.6.  If  A  is a Stieltjes matrix, all entries of its inverse are
nonnegative.20

Proof.  Let’s agree to write  v ≥ 0  if no component of vector  v  is negative.
Let  u  be the solution of the linear system  A u = b, and suppose  b ≥ 0.
Write  u  in the form  u = u+ – u–, with  u+ ≥ 0  and  u– ≥ 0, and remark that
u+

nu
–
n = 0  for all  n ∈ N0  (if we continue to call  N0  the indexing set of  S,  u,

and  b).  Now,

0 ≤ (b, u– )  = (A(u+ – u– ), u– ) = (Au+, u– ) – (Au–, u– ).

But  (Au+, u– ) ≤ 0, because only off-diagonal entries of  A  contribute to this
scalar product, so  (Au–, u– ) = 0, hence  u– = 0.  Thus  A–1 b  has no negative
components if  b  has none, hence the result.  ◊

This applies to our system matrix  00M  in the case where no dihedral
angle is obtuse, with interesting consequences that we shall discover in
the next chapter.

EXERCISES

Texts for Exercises 3.1 to 3.4 are on pp. 64 and 66.
Exercise 3.5.  Reinforce your knowledge of the following facts:  The real
and imaginary parts of a function which is holomorphic in some domain
of the complex plane are harmonic.  Conformal transformations preserve
harmonicity.

Exercise 3.6.   In the plane  {x, y}, find a function  ϕ  which is harmonic in
the domain  {{x, y} :  x < 0  or  y < 0}  and null on the axes  y = 0  and  x = 0.
Take its restriction to the domain  D  obtained by clipping the regions
y ≤ –1  and  x ≤ –1.  Examine the singularity of  ϕ  at  0.  Is  ∇ϕ  square-integrable
in  D ?  Show that this is the idealization of a situation which can happen
physically.

Exercise 3.7 is on p. 74.  Exers. 3.8 to 3.12 are on pp. 77 to 79, and Exer. 3.13
on p. 83.

20Matrices with this property are called “monotone”.  (They are akin to  “M-matrices”
[BP, Jo, Na].   Beware the terminological confusion around this concept.)  Notice that at least
one term on each row of the inverse must be positive.



EXERCISES 85

Exercise 3.14.  In the finite differences
method, potential values at the nodes of a
so-called “orthogonal grid” are the
unknowns, and equations are obtained via
local Taylor expansions of the unknown
potential [Va].  For instance (inset), if  ϕ
must satisfy  – ∆ϕ = 0, the values of  ϕ  at a
node  O  and at neighboring nodes  E, N,
W, S, will approximately satisfy

(24) ϕO = [k2(ϕE + ϕW) + h2(ϕN + ϕS)]/2(k2 + h2) .

There is one equation of this kind for each node like  O, and altogether
they form a linear system similar to (20), when one takes into account
boundary nodal values.  Describe this method as a special case of the
finite element method.

Exercise 3.15.  The method of finite differences does not adapt easily to
domains with complicated boundaries, and the finite element method has
a decisive advantage in this respect.  However,
it’s intuitive that inside physically homogeneous
regions (constant coefficients), one should use
meshes as “regular” (that is, uniform and
repetitive, crystal-like) as one can devise.  For
instance, in 2D, equilateral triangles (inset) are a
good idea.  As far as tetrahedral elements are concerned, do we have the
equivalent of this in 3D?  Can one pave space with regular tetrahedra?

Exercise 3.16.   The next best thing to a regular tetrahedron is an isosceles
tetrahedron, one for which opposite edges are equal, two by two [Co].
Find an isosceles tetrahedron that will pave.

Exercise 3.17.  One expects the reluctance of a circuit to decrease when the
permeability increases anywhere inside.  Show that, indeed, if  µ2 ≥ µ1
a.e. in  D  in our model problem, the corresponding reluctances satisfy
R2 ≤ R1.

Exercise 3.18.  One expects the reluctance to decrease when all the
dimensions of the device increase proportionally.  Prove it.

Exercise 3.19.   Study the continuity of  ϕ  with respect to  µ  in the model
problem.
Exercise 3.20 (research project).  Study the continuity of  ϕ  with respect to
the shape of the domain.
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HINTS

3.1.  The question amounts to finding a quadratic functional whose
directional derivative at point  ϕ  would be

ϕ' → ∫ D µ0 grad ϕ · grad ϕ' + µ0 ∫D  m · grad ϕ' ,

and we know the answer when  m = 0.  What remains to be found is a
function of  ϕ  (obviously, a linear function, since  m  does not depend on  ϕ)
having   ϕ' →  µ0 ∫D  m · grad ϕ'  as its directional derivative.

3.2.  On  Φ,  ||  ||µ  is not a norm:  Properties  ||λ  ϕ||µ = |λ| ||ϕ||µ, ||ϕ + ψ||µ ≤ ||ϕ||µ +
||ψ||µ  and  ||ϕ||µ ≤ 0  do hold, but  ||ϕ||µ = 0  does not entail  ϕ = 0.  We have
only a semi-norm there.  How can that be cured?

3.3.  The goal is to find a constant  C  such that  |J(ψ)| ≤ C ||ψ||µ, where  ψ
is any member of  Φ∗, not one that satisfies (1) necessarily.  But on the
other hand, the solution of (1) which has the same mmf as  ψ  is a good
reference, after Fig. 3.2 and the proof of Prop. 3.1.

3.6.  This is a simple exercise in conformal transformations.  First find a
harmonic function in a half-plane that vanishes on the boundary, then
map the half-plane onto the desired region.

3.7.  Call “small diagonals” and “large diagonals” the segments joining
two vertices, depending on whether they belong to the cube’s surface or
not.  Show that at most one large diagonal can exist in the mesh.  If there
is one, show that at least three inner faces must have it as an edge.  (Beware,
it’s a challenging exercise.)

3.8.  Look at the nodal values of  ∑n ααααn λ
n.

3.9.  In particular,  ( ∫T λn)/vol(T) = 1/4, where  vol  denotes the volume,
and the general case is, obviously,  (∫s λ

n)/meas(s) = 1/(p + 1)  for a simplex
s  of dimension  p, where  meas  for “measure” stands for length, area, etc.
To say “all sums  ∫s λ

n  for  n ∈ N  (s)  are equal, and they add to  meas(s), by
(13)” is a fine symmetry argument, but why this equality?  It stems from
general results on change of variables in integration—but rather try a
pedestrian and straightforward “calculus proof”.

3.10.  Probably the simplest way is to use the calculus proof to compute
∫s (λ

n)2, then the symmetry argument for  m ≠ n.

3.11.  Up to the factor  4,  λn λm  is right.  As for  λn λn, look at its behavior
along a typical edge  {n, m}, and rectify at mid-edge.
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3.12.  Combine Exers. 3.10 and 3.11.

3.13.  The same trick as in Prop. 3.1.

3.14.  Grid cells must be cut in two, so if point  P  for instance is linked with
O  by an edge, making them “neighbors” on the finite element mesh, one
expects a nonzero entry in the stiffness matrix at row  O  and column  P,
which is not the case of the finite-difference scheme (24).  Explaining
why this term vanishes is the key.  It has to do with the right angle,
obviously.

3.15.  If paving was possible, tetrahedra around a given edge would join
without leaving any gap, so the dihedral angle would have to be  2π/n
for some integer  n.  Is that so?

3.17.  Suppose  I = 1  for simplicity.  Then  R1
–1 = inf( ∫D µ1 |∇ϕ|2 :  ϕ ∈ Φ1} .

Replace  ϕ  by  ϕ2, the solution for  µ = µ2.

3.18.  Map the problem concerning the enlarged region onto the reference
one, and see how this affects  µ.

3.19.  Consider two problems corresponding to permeabilities  µ1  and  µ2,
all other things being equal.  Denote the respective solutions by  ϕ1  and
ϕ2.  Let  ||ϕ||1  or  ||ϕ||2  and  (ϕ, ϕ' )1  or  (ϕ, ϕ' )2  stand for  ||ϕ||µ  and  (ϕ, ϕ' )µ,
depending on the value of  µ.  One has

(25) ∫D µi grad ϕi · grad ϕ' = 0    ∀  ϕ' ∈ Φ0, for  i = 1, 2.

Choose appropriate test functions, combine both equations, and apply the
Cauchy–Schwarz inequality.

3.20.  If the deformation is a homeomorphism, the same mapping trick as
in Exer. 3.18 reduces the problem to analyzing the dependence with respect
to  µ, with a new twist, however, for  µ  will become a tensor.  You will
have to work out a theory to cover this case first.

SOLUTIONS

3.1.  Let  M(ϕ) = ∫D m · grad ϕ.  Since  M(ϕ + λϕ') = M(ϕ) + λM(ϕ'), the
directional derivative of  M  is  ϕ' → lim λ → 0(M (ϕ + λϕ') – M (ϕ))/λ, that
is,  ϕ' → ∫D m · grad ϕ', the same formally21 as  M  itself.  This holds for
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all linear functionals, so we shall not have to do it again.  The variational
forms of (2.34) and (2.36) thus consist in minimizing the functionals

ϕ → 1
2  ∫ D µ0 |grad ϕ|2 + µ0 ∫D  m · grad ϕ    on  ΦI  ,

ϕ → 1
2  ∫ D µ0 |grad ϕ|2 – F J(ϕ)                       on  Φ∗,

respectively.

3.2.  On  Φ,  ||ϕ||µ = 0  implies a constant value of  ϕ, but not  ϕ = 0, so  ||  ||µ  is
not a norm, whereas its restriction to  Φ∗  is one.  This hardly matters,
anyway, since two potentials which differ by an additive constant have
the same physical meaning.  So another possibility would be for us to
define the quotient  Φ/IR  of  Φ  by the constants, call that  Φ ËËËË , and give it
the norm  ||ϕËËËË ||µ = inf{c ∈ IR :  ||ϕ + c||µ}, where  ϕ  is a  member of the class
ϕËËËË  ∈ Φ Ë.  Much trouble, I’d say, for little advantage, at least for the time
being.  Later, we’ll see that what happens here is a general fact, which
has to do with gauging:  It’s equivalence classes of potentials, not potentials
themselves, that are physically meaningful, so this passage to the quotient
I have been dodging here will have to be confronted.
3.3.  Take  ψ ∈ Φ∗, and let  I = J(ψ).  Then (Fig. 3.2)  ||ϕ(I)||µ ≤ ||ψ||µ.  Using
Prop. 3.2, we thus have

|J(ψ)| = |I| = [||ϕ(1)||µ ]
–1 ||ϕ(I)||µ ≤ [||ϕ(1)||µ ]

–1 ||ψ||µ.

3.4.  If  m > n,  ∫ |fn – fm| = ∫[1/n, 1/m]  dx/√x = 2/√n – 2/√m < 2/√n  tends to
zero.

3.5.  Let  f(z) = P(x, y) + i Q(x, y).  Holomorphy of  f  inside  D  means
differentiability in the complex field  C, that is, for all  z ∈ D, existence
of a complex number  ∂f(z)  such that  f(z + dz) = f(z) +  ∂f(z) dz + o(dz)  for
all  dz  in  C.  Cauchy conditions for holomorphy are  ∂xP = ∂yQ  and  ∂yP = –
∂xQ, so  ∂xxP = ∂ xyQ = ∂ yxQ = – ∂yyP, hence  ∆P = 0, and the same for  Q.  In
dimension 2, conformal mappings (those which preserve angles, but not
distances) are realized by holomorphic maps from  C    to  C, and holomorphy
is preserved by composition.

3.6.  A harmonic function in the upper half-plane  y > 0  which vanishes
for  y = 0  is  {x, y} → y, the function denoted  Im  (for imaginary part).  The

21But not conceptually.  The argument of  M  is a point in an affine space, whereas  ϕ', in
the expression of the directional derivative, is an element of the associated vector space.

fan map  g = z → i z3/2 sends the upper half-plane to the domain



SOLUTIONS 89

{{x, y} :  x < 0  or  y < 0}.   Composition of  Im  and  g–1  yields the desired
function (cf. Fig. 3.6), better expressed in polar coordinates:

ϕ(r, θ) = r2/3 sin((2θ – π)/3).

(Note that  ϕ  cannot be extended to the whole plane.  Note also that it is
not piecewise  k-smooth for  k > 0, in the sense we adopted in Chapter 2.)
Its gradient is infinite at the origin, where its modulus behaves like  r –1/3.
Since  ∫0

R (r –1/3)2 r dr = ∫0
R r 1/3 dr  converges, this is a potential with finite

associated magnetic (co)energy.

r2/3sin((2θ – π)/3)

0

x

y

y
0

y

x

FIGURE 3.6.  The function  f(r, θ) = r 2/3 sin((2θ – π)/3)  of plane polar coordinates,
for  π/2 ≤ θ ≤ 2π.  Left:  level lines.  Right:  perspective view of the graph.

Now imagine one of the level surfaces of  ϕ  (a cylinder along  0z) is
lined up by some perfectly permeable material.  This potential is then
the solution of a two-dimensional analogue 22 of our model problem, in
which the system would be infinite in the  z–direction.
3.7.  Two large diagonals would cut at the center, so there can’t be more
than one.  At least three faces must hinge on it, since dihedral angles are
less than  π, and at most six, corresponding to the six possible vertices.  So,
see how to leave out one, two, or three of these.  Fig. 3.7 gives the result.

22A genuinely three-dimensional example would be more demonstrative.  See [Gr] for
the (more difficult) techniques by which such examples can be constructed.

Alternatively, one may consider whether opposite faces are cut by parallel
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or anti-parallel small diagonals.  (This is meaningful when one thinks of
stacking cubes in order to make a tetrahedral mesh.)  Whichever way,
it’s pretty difficult to prove the enumeration complete!

6 5

3 4

4

0

FIGURE 3.7.  All ways to mesh a cube, depending on the number of inner faces
that have a large diagonal as one of their edges.

3.8.  ∑  n ααααn λ
n(xm) = ααααm, by construction of the nodal functions, so if  ∑n ααααn λ

n

= 0, then all  ααααns  vanish.

3.9.  One may invoke the general result about “change of variables” in
integration,  ∫u(D) f Ju = ∫D u∗f,  where  u∗f  is the pull-back   x → f(u(x))  and
Ju  the Jacobian of the mapping  u, for there is an affine map from  T  to
itself that swaps  n  and  m,  λn  and  λm, which is volume preserving (Ju =
1).  A much more elementary but safer alternative is, in Cartesian
coordinates:  Place the basis of tetrahedron  T  in plane  x–y, and let  n  be
the off-plane node, at height  h.  Then  λn(x, y, z) = z/h.  If  A  is the area
of the basis, then  ∫T λn = A ∫0

h dz (1 – z/h)2 z/h = hA/12, hence  ∫T λn =
vol(T)/4.  Same thing for a triangle:  basis on  x  axis, height  h, etc.  You
may prefer a proof by recurrence on the dimension.  Anyway, once in
possession of these basic symmetry results, further computations (cf. Exer.
3.10) simplify considerably.

3.10.  First compute  I nn = ∫T (λn)2 = A/h2 ∫0
h dz (h – z) 2 z2/h2 = vol(T)/10, and

similarly, obtain the equality  I nnn = ∫T (λn)3 = vol(T)/20.  Then  I nn =
∫T λn (1 – ∑ m ≠ n λ

m ) = vol(T)/4 – 3 Inm), hence  Inm = vol(T)/20.  And so on.  The
general formula,

∫T (λl)i (λm)j (λn)k = 6 vol(T) i! j! k! /(i+j+k+3)!

(cf. [Sf]), may save you time someday.  (Thanks to (13) and Remark 3.3,
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this is enough to sum any polynomial over  T.)  The analogue on faces [SF]
is  ∫f (λ

m)i (λn)j = 2 area(f) i! j!/(i + j + 2)!.

3.11.  On  [0, 1], the function  w = x → 2x2 – x  behaves as requested, that is,
w(0) = w(1/2) = 0  and  w(1) = 1.  Therefore,  wn m  = 4 λnλm  and  wn n  =
λn(2λn – 1).

3.12.  Weights  1/5  at mid-edges and  –1/20
at nodes.  For the triangle, amusingly, 1/3
at mid-edges and 0 at nodes (inset).

3.13.  For all  ψψψψ,  0 ≤ (M(ϕϕϕϕ + λψψψψ), ϕϕϕϕ  + λψψψψ) =
2λ (Mϕϕϕϕ, ψψψψ) + λ2 (Mψψψψ, ψψψψ), so  (Mϕϕϕϕ, ψψψψ) = 0  for
all  ψψψψ, which implies  Mϕϕϕϕ = 0.  ◊

3.14.  Use the cotangent formula (23).  There are two right angles in front
of edge  OP, hence the nullity of the coefficient  AOP.  Formula (24) comes
immediately in the case of node pairs like  O–N,  O–E, etc., by using (23)
and the relation tan θ = k/h, where  θ  is
the angle shown in the inset.  Note how
(23) gives the same value for matrix
entries corresponding to such pairs
whatever the diagonal along which one
has cut the rectangular cell.  (Further
study:  Consider orthogonal, but not
uniformly spaced, grids.  Generalize to
dimension 3.)

3.15.  No, the regular tetrahedron is not a “space-filling” solid.  Its dihedral
angle, easily computed, is about 70°32’, hence a mismatch.  See [Ka] or [Si]
on such issues.
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FIGURE 3.8.  Left:  The tetrahedron (in thick lines).  Middle:  Assembly of four
copies of it into an octahedron, by rotation around the middle vertical pole.  Right:
Sticking a fifth copy to the upper right flank.  A sixth copy will be attached to the
lower left flank in the same way, hence a paving parallellepiped.
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3.16.  Cf. Fig. 3.8.  Length  b  should equal  a √2/3.  There is numerical
evidence [MP] that such tetrahedra yield better accuracy in some
computations than the standard “cubic” grid, subdivided as Fig. 3.7
suggests.  (A suitable combination of regular octahedra and tetrahedra,
by which one can pave [Ka], may also be interesting in this respect.)
3.17.  Call  ϕ1  and  ϕ2  the solutions corresponding to  µ1  and  µ2.  Then  R1

–1

= inf{∫D µ1 |∇ϕ|2 :  ϕ ∈ Φ1} ≤ ∫D µ1 |∇ϕ2|
2 ≤ ∫D µ2 |∇ϕ2|

2 = R2
–1.

3.18.  With respect to some origin, map  D  to  Dλ  by  x → λx, with  λ > 0,
and assign to  Dλ  the permeability  µλ  defined by  µλ(λx) = µ(x).  If  ϕ  is an
admissible potential for the problem on  D, then  ϕλ, similarly defined by
ϕλ(λx) = ϕ(x), is one for the problem on  D λ.  Changing variables, one sees
that  ∫Dλ

 µλ |∇ϕλ|
2 = ∫D λµ |∇ϕ|2, so it all goes as if  µ  had been multiplied

by  λ  (in vacuum, too!).  Hence the result by Exer. 3.17.
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FIGURE 3.9.  Exercise 3.19.  How the presence in the domain under study of a
highly permeable part ( µ1 >> µ0), even of very small relative volume, is enough to
distort the field.  (Two-dimensional drawing, for clarity.  In the case of Fig. 3.1, a
similar effect would be achieved by putting a high-µ  thin sheet inside  D.)

3.19.  Since both  ϕ1  and  ϕ2  belong to  ΦI, one can set  ϕ' = ϕ1 – ϕ2  in both
equations (25), and subtract, which yields

(ϕ1, ϕ1 – ϕ2)1 + (ϕ2, ϕ2 – ϕ1)2 = 0.

Therefore,

                   ||ϕ1 – ϕ2||1
2 = ∫D (µ1 – µ2) ∇ϕ2 · ∇(ϕ2 – ϕ1) ≡ ((1 – µ2/µ1)ϕ2, ϕ2 – ϕ1)1,

hence  ||ϕ1 – ϕ2||1 ≤ C(µ) ||ϕ2||1  by Cauchy–Schwarz, where  C(µ)  is an upper
bound for  |1 – µ2/µ1|  over  D.  Hence the continuity with respect to  µ  (a
small uniform variation of  µ  entails a small change of the solution), but
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only, as mathematicians say, “in the  L∞  norm”.  The result cannot be
improved in this respect:  A large variation of  µ, even concentrated on a
small part of the domain, can change the solution completely, as Fig. 3.9
suggests.
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