
CHAPTER 2

Magnetostatics:
“Scalar Potential” Approach

2.1  INTRODUCTION:  A MODEL PROBLEM

Let us now tackle problem (31) from Chapter 1:  magnetostatics.  We need
a model problem for this discussion;  we need it to be as simple as possible,
and still come from the real world.

The following, known as the “Bath cube” problem [DB], will do.  It is
concerned with a device, built around 1979 at Bath University, which
was essentially a hollow box between the poles of a large electromagnet
(Fig. 2.1).  In this almost closed experimental volume, various conducting
or magnetizable objects could be placed, and probes could be installed to
measure the field.  The purpose was to confront what computational codes
would predict with what these probes recorded.  The problem was one in a
series of such benchmark problems, regularly discussed in an ad-hoc forum
(the TEAM international workshop [T&]).  Comparative results for this
one (known as “Problem 5”) can be found in [B5].
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FIGURE 2.1.  The “Bath cube” benchmark.  Both coils bear the same intensity  I.
The magnetic circuit  M  is made of laminated iron, with high permeability
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(µ > 1000 µ0).   Various objects can be placed in the central experimental space.
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Problem 5 was actually an eddy-current problem, with alternating
current in both coils, and we shall address it in Chapter 8.  What we
discuss here is the corresponding static problem, with DC currents:  given
the coil-current, find the field inside the box.

It will be some time before we are in a position to actually solve this
problem, despite its obvious simplicity.  For before solving it, we must set
it properly.  We have a physical situation on the one hand, with a
description (dimensions, values of physical parameters) and a query (more
likely, an endless series of queries) about this situation, coming from some
interested party (the Engineer, the Experimenter, the Customer, . . . ) .  To
be definite about that here, we shall suppose the main query is, “What is
the reluctance of the above device?”  The task of our party (the would-be
Mathematical Modeller, Computer Scientist, and Expert in the
Manipulation of Electromagnetic Software Systems) is to formulate a
relevant mathematical problem, liable to approximate solution (usually
with a computer), and this solution should be in such final form that the
query is answered, possibly with some error or uncertainty, but within a
controlled and predictable margin.  (Error bounds would be ideal.)

Mathematical modelling is the process by which such a correspondence
between a physical situation and a mathematical problem is established.1

In this chapter, a model for the above situation will be built, based on the
so-called “scalar potential variational formulation”.  We shall spiral
from crude attempts to set a model to refined ones, via criticism of such
attempts.  Some points about modelling will be made along the way, but
most of the effort will be spent on sharpening the mathematical tools.

First attempt, based on a literal reading of Eqs. (1.31).  We are given a
scalar field  µ, equal to  µ0  in the air region, and a time-independent
vector field  j  (actually, the  jg  of (1.31), but we may dispense with the
superscript  g  here).  From this data, find vector fields  b  and  h  such that

(1) rot h = j,             

(2) b = µ h,                

(3) div b = 0,

in all space.
The first remark, predictable as it was, may still come as a shock:

This formulation doesn’t really make sense;  the problem is not properly

1 It requires from both parties a lot of give and take.

posed this way.
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2.2  HONING OUR TOOLS

At least two things disqualify (1–3) as a proper formulation.  One is the
non-uniqueness of  b  and  h, a mild problem which we’ll address later.
The other is the implicit and unwarranted assumption of regularity, or
smoothness, of these fields.  For instance,  div b = 0  makes perfect sense if
the three components  b1,  b 2,  b3, in Cartesian coordinates, are differentiable.
Then  (div b)(x) = ∂1b

1(x) + ∂ 2b
2(x) + ∂ 3b

3(x), a well-defined function of
position  x, and the statement  “div b = 0” means that this function is
identically  0.  No ambiguity about that.  But we can’t assume such
differentiability.2  As one knows, and we’ll soon reconfirm this knowledge,
the components of  b  are not differentiable, not even continuous, at some
material interfaces.  Still, conservation of the induction flux implies a
very definite “transmission condition” on  S.

2.2.1 Regularity and discontinuity of fields

Since smoothness, or lack thereof, is the issue, let’s be precise, while
introducing some shorthands.  D  being a space domain,3 the set of all
functions continuous at all points of  D  is denoted  C 0(D).  A function is
continuously differentiable  in  D  if all its partial derivatives are in  C0(D),
and one denotes by  C1(D)  the set of such functions (an infinite-dimensional
linear space).  Similarly,  C k(D)  or  C∞(D)  denote the spaces composed of
functions which have continuous partial derivatives of all orders up to  k
or of all orders without restriction, inside  D.  In common parlance, one
says that a function  “is  C k ”, or “is  C∞ ” in some region, implying that
there is a domain  D  such that  C k(D), or  C∞(D), includes the restriction of
this function to  D  as a set element.  “Smooth” means by default  C∞, but is
often used noncommittally to mean “as regular as required”, that is,  C k

2This is not mere nit-picking, not one of these gratuitous “rigor” or “purity” issues.  We
have here a tool, differential operators, that fails to perform in some cases.  So it’s not the right
tool, and a better one, custom-made if necessary, should be proposed, one which will work
also in borderline cases.  Far from coming from a position of arrogance, this admission that a
mismatch exists between some mathematical concepts and the physical reality they are supposed
to model, and the commitment to correct it, are a manifestation of modesty:  When the
physicist says “this tool works well almost all the time, and the exceptions are not really a
concern, so let’s not bother”, the mathematician, rather than hectoring, “But you have no
right to do what you do with it,” should hone the tool in order to make it able also to handle
the exceptions.

3Recall the dual use of “domain”, here meaning “open connected set” (cf. Appendix A,
Subsection A.2.3).

for  k  high enough.  (I’ll say “k-smooth” in the rare cases when definiteness
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on this point is important.)  These notions extend to vector fields by applying
them coordinatewise.

In principle, the gradient of a function is only defined at interior points
of its domain4 of definition, since the gradient is a record of variation
rates in all directions.  Depending on the local shape of the boundary, it
may still be possible to define a gradient at a boundary point, by taking
directional derivatives.  How to do that is clear in the case of a smooth
boundary (on each line through a boundary point, there is a half-line
going inwards).  But it’s more problematic at a corner, at the tip of a cusp,
etc.  This is why the concept of smoothness over a region (not only inside
it), including the boundary, is delicate.  To avoid ambiguities about it, I’ll
say that a function  f  is smooth over a region  R  (which may itself be very
irregular, devoid of a smooth boundary) if there is a domain  D  containing
R  in which some extension of  f  (cf. A.1.2) is smooth.  (See Fig. 2.2.)
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FIGURE 2.2.  Notions of smoothness, for a function of a real variable.  Left to right,
functions which are:  smooth in  ]a, b[, smooth over  [a, b], piecewise smooth in
region  R, not piecewise smooth.

Piecewise smooth, then, has a precise meaning:  It refers to a function,
the domain of which can be partitioned into a mosaic of regions, in finite
number, over each of which the function is smooth.  This does not exclude
discontinuities across inner boundaries, but allows only frank discontinuities
(of the “first kind”), or as we shall say below, “jumps”.
Exercise 2.1.  Check that a piecewise smooth function  f  has a definite
integral  ∫D |f|  on a bounded domain.  Is this latter assumption necessary?

Now let’s return to the case at hand and see where exceptions to
smoothness can occur.  In free space  (µ = µ0, and  j = 0),  rot h = 0  and  div h
= 0, and the same is true of  b.  We have this well-known formula which
says that, for a  C2-vector field  u,

4The other meaning of the word (Subsection A.1.2).

(4) rot rot u = grad div u – ∆u,
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where  ∆u  is the field, the components of which are  {∆u1, ∆u2, ∆u3}.  So
both  h  and  b  are harmonic,  ∆h = 0  and  ∆b = 0, in free space.  A rather
deep result, Weyl’s lemma , can then be invoked:  harmonic functions are
C∞.  So both  b  and  h  are smooth.5  The same argument holds unchanged
in a region with a uniform  µ, instead of  µ0.
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FIGURE 2.3.  Flux line deviation at a material interface.  The pair  {h i,  bi}  is the
field on side  i, where  i = 1  or  2.

In case two regions with different permeabilities  µ1  and  µ2  are
separated by a smooth surface  S  (Fig. 2.3),  b  and  h  will therefore be
smooth on both sides, and thus have well-defined flux lines. 6  But the
latter will not go straight through  S.  They deviate there, according to
the following “law of tangents”:

(5) µ2 tan θ1 = µ1 tan θ2,

where  θ1  and  θ2  are the angles the flux half-lines make with the normal
n  at the traversal point  x.  So if  µ1 ≠ µ2, neither  b  nor  h  can be continuous
at  x.  Formula (5) is an immediate consequence of the two equalities,
illustrated in Fig. 2.3,

(6) n · b1 = n · b2   on   S,                 (7)              n × h1 = n × h2   on   S,

5A similar, stronger result by Hörmander [Hö] implies that  h  and  b  are smooth if  µ
itself is  C∞.  Cf. [Pe].  All this has to do with one (number 19) of the famous Hilbert problems
[Br].

6A flux line  of field  b  through point  x 0  is a trajectory  t → x(t)  such that  x(0) = x0  and
(∂tx)(t) = b(x(t)).  If  b  is smooth and  b(x0) ≠ 0, there is such a trajectory in some interval
] – β, α[  including  0, by general theorems on ordinary differential equations.  See, e.g., [Ar],
[CL], [Fr], [LS].

called transmission conditions, which assert that the normal part of  b
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and the tangential part of  h  are continuous across  S, and which we now
proceed to prove.

The proof of (6) comes from an integral interpretation of Faraday’s
law.  By the latter, the induction flux through any closed surface vanishes.
Let’s apply this to the surface of the “flat pillbox” of Fig. 2.4, built from
the patch  Ω   (lying in  S) by extrusion.  This surface is made of two
surfaces  Ω 1  and  Ω 2  roughly parallel to  S, joined by a thin lateral band.
Applying Ostrogradskii 7 and letting the box thickness  d  go to  0, one
finds that  ∫Ω (n · b1 – n · b2) = 0, because the contribution of the lateral band
vanishes at the limit, whereas  n · b  on  Ω 1  and  Ω 2  respectively tend to
the values   n · b1  and  n · b 2  of  n · b  on both sides of  Ω .  Hence (6), since  Ω
is arbitrary.
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FIGURE 2.4.  Setup and notations for the proof of (6) and (7).

As for (7), we rely on the integral interpretation of Ampère’s theorem:
the circulation of  h  along a closed curve is equal to the flux of  j + ∂td
through a surface bound by this curve.  Here we apply this to the “thin
ribbon” of Fig. 2.4, built by extrusion from the curve  γ   lying in  S.  Since  j +
∂td = 0  in the present situation, the circulation of  h  along the boundary of
the ribbon is zero.  Again, letting the ribbon’s width  d  go to  0, we obtain
∫γ (τ · h1 – τ · h2) = 0, which implies, since  γ   is arbitrary, the equality of
the projections (called “tangential parts”) of  h1  and  h2  onto the plane
tangent to  S.  This equality is conveniently expressed by (7).

Fields therefore fail to be regular at all material interfaces where  µ
presents a discontinuity, and  div  or  rot  cease to make sense there.  Some
regularity subsists, however, which is given by the interface conditions
(6) and (7).  For easier manipulation of these, we shall write them  [n · b]S
= 0  and  [n × h]S = 0, and say that the jumps of the normal part of  b  and of
the tangential part of  h  vanish at all interfaces.  Before discussing the
possibilities this offers to correctly reformulate (1–3), let’s explain the

7Flux, circulation, and relevant theorems are discussed in detail in A.4.2.

notation and digress a little about jumps.
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2.2.2  Jumps

This section is a partly independent development about the bracket notation
[ ]  for jumps, which anticipates further uses of it.

Consider a field (scalar- or vector-valued) which is smooth on both
sides of a surface  S, but may have a discontinuity across  S, and suppose  S
is provided with a crossing direction.  The jump across  S  of this quantity
is by definition equal to its value just before reaching the surface, minus
its value just after.  (The jump is thus counted downwards;  rather a “drop”,
in fact.)  Giving a crossing direction through a surface is equivalent to
providing it with a continuous field of normals.  One says then that the
surface has been externally oriented.8

Not all surfaces can thus be oriented.  For one-sided surfaces (as happens
with a Möbius band), defining a continuous normal field is not possible,
and the crossing direction can only be defined locally, not consistently over
the whole surface.  For surfaces which enclose a volume, and are therefore
two-sided, the convention most often adopted consists in having the normal
field point outwards.  This way, if a function  ϕ  is defined inside a domain
D, and equal to zero outside, its jump  [ϕ]S  across the surface  S  of  D  is
equal to the trace  ϕS  of  ϕ, that is, its restriction to  S  if  ϕ  is smooth
enough, or its limit value from inside otherwise.  The conventions about
the jump and the normal thus go together well.

For interfaces between two media, there may be no reason to favor one
external orientation over the other.  Nonetheless, some
quantities can be defined as jumps in a way which does
not depend on the chosen crossing direction.

Consider for instance the flux of some vector field  j
through an interface  S  between two regions  D1  and  D2
(inset).  Let  n1  and  n2  the normal fields defined according
to both possible conventions:  n1  points from  D1  towards
D2, and  n2  points the other way.  Suppose we choose  n 1
as the crossing direction, and thus set  n = n1.  Then the
jump of the normal component  n . j  across  S  is by definition equal to its
value on the  D 1  side, that is,   n1 . j, minus the value of  n . j  on the  D2
side, which is  – n2 · j.  The jump is thus the sum  n1 · j + n2 · j.  This is
symmetrical with respect to  D1  and  D2, so we are entitled to speak of
“the jump of  n · j  across  S” without specifying a crossing direction.
Whichever this direction, the decrease of  n · j  when crossing will be the

8Which suggests there is also a different concept of internal orientation (cf. Chapter 5).

same, because the sign of  n  intervenes twice, in the choice of direction,
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and in the choice of which side one “jumps from”.  Hence the definition of
the jump of  j  as  [n · j] = n 1 · j1 + n2 · j2, where  j1  and  j 2  are the values on each
side of  S.

Such jumps often have interesting physical interpretations.  For
instance, if  j  is a current density, the jump is equal to the intensity that is
“instilled in  S”, and is withdrawn by some mechanism.  When no such
mechanism exists, as for instance at the interface between two conductors,
the jump must vanish.  But it may happen otherwise.  For instance, if  S
corresponds to a highly conducting inclusion inside a normal conductor, the
current  [n · j]  withdrawn at some place will be conveyed along  S  and
reinjected at other places, where  [n · j]   will be negative.  Note that such
considerations would apply to a Möbius band without any problem.

In the case of the electric induction  d, the jump  [n  . d]S  is the density
of electric charge present on surface  S;  hence the interface condition
[n · d]S = 0, unless there is a physical reason to have electric charge concen-
trated there.  Same thing with  b, and magnetic charge.  Our proof above
that  [n · b] = 0  across all interfaces made implicit use of the absence of
such charge.  But there are problems in which the jump of a quantity denoted
n · b  can be nonzero.  This happens, for instance, when fictitious surface
magnetic charges are used as auxiliary quantities in integral methods,
and then  [n · b] = q, the fictitious charge density.

A bit different is the case of vector quantities, such as the magnetic
field.  The jump  [h] S  is simply the field, defined on  S, obtained by taking
the jumps of the three coordinates.  The subject of interest, however, is
more often the jump of the tangential part of  h.

If  h  is smooth, we call tangential part and denote by  h S  the field of
vectors tangent to  S  obtained by projecting  h(x), for all  x  in  S, on the
tangent plane  T x  at  x  (Fig. 2.5, left).  If  h  is smooth on both faces of  S
but discontinuous there, there are two bilateral projections  hS1  and  hS2,
and the jump of  hS, according to the general definition, is  [hS]S = hS1 – hS2
in the case of Fig. 2.5.  The sign of this of course depends on the crossing
direction.  But the remark

(8) [hS]S = – n × [n × h]S = – n × (n1 × h1 + n2 × h2)

points to the orientation-independent surface vector field  [n × h] S.  This is
equal to the jump  [h S]S  of the tangential part, up to a 90° rotation,
counterclockwise, around the normal.  The cancellation of the tangential
jump is thus conveniently expressed by  [n × h]S = 0.
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This field  [n × h]  is interesting for another reason.  As suggested by
Fig. 2.5, right,  [n × h]  is always equal to minus the current density  j

 S
  (a

surface vector field, thus modelling a “current sheet”) supported by the
interface.  For instance, if the crossing direction is from region 1 to region 2,
and thus  n = n1 = – n2, then  [n × h] = n1 × h1 + n2 × h2, which is  – j S  by
Ampère’s theorem.  We find the same result with the other choice.  Again,
if there is no way to carry along the excess current (such as, for instance, a
thin sheet of high conductivity borne by  S), then  jS = – [n × h] = 0, which
is the standard transmission condition about  h  we derived earlier.
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FIGURE 2.5.  Left:  Definition of  h S.  Right:  Relation between  j S  and the jump of
hS.  (Take the circulation of  h  along the circuit indicated.)

In a quite similar way,  [n × e]  is equal, irrespective to the choice of
normal, to the time-derivative of the induction flux vector,  ∂tbS , along
the surface.  This is most often 0—hence the transmission condition  [n × e]
= 0—but not always so.  By way of analogy with the previous example,
the case of a thin highly permeable sheet will come to mind.  But there
are other circumstances, when modelling a thin air gap, for instance, or a
crack within a conductor in eddy-current testing simulations, when it may
be necessary to take account of the induction flux in a direction tangential
to such a surface.

2.2.3  Alternatives to the standard formalism

Back to our critical evaluation of the ill-specified equation  div b = 0:
What can be done about it?  A simple course would be to explicitly ac-
knowledge the exceptions, and say, “We want  div b = 0  wherever  b  is
effectively differentiable, and  [n · b] = 0  across all material interfaces
and surfaces where a singularity might occur.”  Indeed, many textbooks
list transmission conditions as equations to be satisfied, and add them to
Maxwell equations, on almost the same footing.
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It would be quite awkward, however, always to be forced to dot i’s
and cross t’s that way.  Besides, and more importantly, the practice of
finite elements does not suggest that material interfaces should contribute
addit ional equations.  So there must be a way to stretch the meaning of
statements such as  div b = 0  in order to imply the transmission conditions.
In fact there are two main ways.  A radical one:  differential forms;  and a
moderate one:  weak formulations, laid on top of the bedrock of classical
vector calculus.

The radical way will not be followed here, but must be mentioned,
because being aware of its existence helps a lot in understanding the
surprising analogies and formal symmetries that abound in the classical
approach.  When looking for substitutes for the di f ferentia l, l oca l equations
div b = 0  and  rot h = 0, we invoked integral, global relations:  flux
conservation, Ampère’s theorem.  All electromagnetic laws (apart from
constitutive laws) say things like “This circulation along that line is equal
to this flux across that surface, this volume integral equals that charge,”
and so forth, with line, surface, and volume in a definite and simple
relationship, such as “is the boundary of”.  The laws thus appear as
relations between real quantities assigned to geometrical elements (points,
lines, surfaces, volumes), and the scalar or vector fields are there as a
way to compute these quantities.

Once we begin to see things in this light, some patterns appear.  Fields
like  e  and  h  are definitely associated with lines:  One takes their
circulations, which are electromotive forces (emf) and magnetomotive
forces (mmf).  The same can be said about the vector potential  a.  And it
can’t be a coincidence either if when a curl is taken, one of these fields is
the operand.  Fields like  b  and  d, or  j, in contrast, are surface oriented,
their fluxes matter, and it’s  div, rarely  rot, which is seen acting on them.
Even the scalar fields of the theory (charge density  q,  magnetic potential
ϕ, electric potential  ψ) have an associated dimensionality:  Point values
of  ϕ  and  ψ  matter, but only volume integrals of  q  are relevant, and terms
like  grad q  are never encountered, contrary to  grad ϕ  or  grad ψ.

This forces us to shift attention from the fields to the linear mappings
of type  GEOMETRIC_ELEMENT → REAL_NUMBER   they help realize.
For instance, what matters about  h, physically, is not its pointwise values,
but its circulations along lines (mmf).  Thus, the status of  h  as a  LINE →
REAL  linear map is more important than its status as a vector field.  The
status of  b  as a  SURFACE → REAL  linear map is what matters (and in
this respect,  b  and  h  are different kinds of vector fields).  The
(mathematical) fields thus begin to appear as mere props, auxiliaries in
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the description of the (physical) field as a connector between geometrical
entities.

Which somewhat devalues differential operators, too:  grad,  rot  and
div, in this light, appear as auxiliaries in the expression of conservation
relations, as expressed by the Ostrogradskii and Stokes theorems.  Their
failure to make sense locally is thus not to be taken too seriously.

Proper form is given to the foregoing ideas in differential geometry.
There, one forgets about the scalar or vector fields and one focuses on the
mappings they represent (and thus, to some extent, hide).  Fields of linear
mappings of  GEOMETRIC_ELEMENT → REAL  type are called di f ferentia l
forms, of degree  0  to  3  according to the dimension of the geometric objects
they act upon, and under regularity assumptions which are milder than
for the scalar or vector proxies, one defines a unique operator  d, the exterior
di f ferentia l, which is realized as  grad,  rot, or  div, depending on the
dimension.  A l l laws of electromagnetism can be cast in this language
(including constitutive laws, which are mappings from  p-forms (p = 0 to
3) to  (3 – p)-forms).

The moderate approach we now follow does not go so far, and keeps
the fields as basic objects, but stretches the meaning of the differential
operators, so that they continue to make sense for some discontinuous fields.
The main idea is borrowed from the theory of distributions:  Instead of
seeing fields as collections of pointwise values, we consider how they act
on other fields, by integration.  But the full power of the theory of
distributions is not required, and we may eschew most of its difficulties.

2.3  WEAK FORMULATIONS

First, some notation.  Symbols  Ck  and  C∞  for smoothness have already
been introduced, compact support9 is usually denoted by a subscripted  0,
and blackboard capitals are used in this book to stress the vector vs scalar
opposition when referring to spaces of fields.  Putting all these conventions
together, we shall thus have the following list of infinite-dimensional
linear spaces:

•   Ck(E3) :  The vector space of all  k-smooth functions in  E3,

9The support of a function, real- or vector-valued, is the closure of the set of points
where it doesn’t vanish.  Cf. A.2.3.

•  Ck(E3) :  All  k-smooth vector fields in  E3,
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•   C0
k(D),   C0

k(D) :  Same, with compact support contained in  D,
being understood that domain  D  can be all  E3, and finally,

•   Ck(D‹),   Ck(D‹) ,
for the vector spaces of restrictions to  D ‹  (the closure
of  D), of  k-smooth functions or vector fields.  In all of
these,  k  can be replaced by  ∞.  (In the inset, the
supports of a  ϕ1 ∈ C0

∞(D)  and a  ϕ2 ∈ C∞(D‹), which is
thus the restriction of some function defined beyond
D, whose support is sketched.)

2.3.1  The “divergence” side

Now, let’s establish a technical result, which generalizes integration by
parts.  Let  D  be a regular domain (not necessarily bounded),  S  its boundary,
b  a smooth vector field, and  ϕ  a smooth function, both with compact
support in  E3  (but their supports may extend beyond  D).  Form  u = ϕ b.
Ostrogradskii’s theorem asserts that  ∫D div u = ∫S n · u, with  n  pointing
outwards, as usual.  On the other hand, we have this vector analysis
formula,

div(ϕ b) = ϕ div b + b · grad ϕ.

Both things together give

(9) ∫D ϕ div b = – ∫D b · grad ϕ + ∫S  n · b  ϕ,

a fundamental formula.  
By (9), we see that a 1-smooth divergence-free field  b  in  D  is charac-

terized by

(10) ∫D b · grad ϕ = 0   ∀ ϕ ∈ C0
1(D),

since with  ϕ = 0  on the boundary, there is no boundary term in (9).  But
(10) makes sense for fields  b  which are only piecewise smooth.10  We now
take a bold step:

Definition 2.1.   A piecewise smooth field   b  which satisfies  (10) will be
said to be divergence-free, or solenoidal, in the weak sense.

10All that is required is the integrability of  b · grad ϕ  in (10), so  0-smoothness, that is,
continuity, of each “piece” of  b  is enough.

The  ϕ’s  in (10) are called test functions.
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A solenoidal smooth field is of course weakly divergence-free.  But
from our earlier discussion, we know that the physical  b, in magnetostatics,
is only piecewise smooth, and satisfies transmission conditions.  Hence
the interest of the following result:
Proposition 2.1.  For a piecewise-smooth   b, (10) is equivalent to   div b = 0
inside regularity regions and  [n · b] = 0  at their interfaces.
Proof.  Recall that “piecewise” means that  D  can be partitioned into a
f inite number of subdomains  D i  in which  b  is smooth, so a proof with two
subdomains will be enough.  It’s a long proof,
which will require two steps.

We begin with the shorter one, in which
b  is supposed to be solenoidal in  D1  and  D2
separately (notation in inset), with  [n · b] = 0
on the interface  Σ.  Our aim is to prove (10).
Let  ϕ  be a test function.  Formula (9) holds in
D1  and  D2  separately, and gives

∫D b · grad ϕ = ∫D1 b · grad ϕ + ∫D2
 b · grad ϕ

                          = –∫D1 ϕ div b + ∫Σ n1 · b  ϕ – ∫D2 ϕ div b + ∫Σ n2 · b  ϕ

                                = ∫Σ [n · b] ϕ = 0

since  [n · b] = 0  has been assumed, hence (10).  The absence of surface terms
on  S  is due to the inclusion  supp(ϕ) ⊂ D.

Conversely, suppose (10) holds.  Since (10) says “for all  test functions
ϕ”, let’s pick one which is supported in  D 1, and apply (9).  There is no
surface term, since  supp(ϕ1)  does not intersect  Σ, so  0 = ∫D1

 div b ϕ.  (Note
that  div b  is a smooth function there.)  This holds for a l l  ϕ ∈ C0

1(D1) .11

But the only way this can happen (see A.2.3 if this argument doesn’t sound
obvious) is by having  div b = 0  in  D1.  Same reasoning in  D2, leading to
div b = 0  also in  D2.  Now, start from (10) again, with a test function
which does not necessarily vanish on  Σ, and use the newly acquired
knowledge that  div b = 0  in  D1  and  D2:

0 = ∫D b · grad ϕ = ∫D1  b · grad ϕ + ∫D2
 b · grad ϕ =

                                  = ∫Σ n1 · b ϕ + ∫Σ n2 · b ϕ  = ∫Σ [n · b] ϕ

11Which is why the presence of the quantifier  ∀  in Eq. (10) is mandatory.  Without it,
the meaning of the statement would change totally.

for all  ϕ ∈ C0
1(D).  But such test functions can assume any value on  Σ, so

D D
1 2

Σ

n   .

n    .

1 .

2   .
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again, the only way  ∫Σ [n · b] ϕ  can vanish for all of them is by  [n · b]Σ
being   0.  ◊

Interface conditions are thus implicit in the “weak solenoidality”
condition (10).  We shall therefore acquire the “weak formulation reflex”:
Each time a statement of the form “div b = 0” appears in the formulation
of a problem (this is what one calls the “strong formulation”), replace it
by the weak formulation (10).  This does no harm, since there is equivalence
in case  b  has a divergence in the ordinary (“strong”) sense.  It does some
good if  b  is only piecewise smooth, since there is no need to make explicit,
or even mention, the transmission conditions  [n · b ]  = 0, which are implied
by (10), as Prop. 2.1 has shown.

We now see why the  ϕ’s  are called “test functions”:  By carefully
selecting them, we were able to “test” the equality  div b = 0  inside
regularity regions, to “test” the transmission condition over  Σ, etc.  The
function  div b  and the constant  0  were thus deemed equal not because
their values would coincide, but on the ground that their effects on test
functions were the same.  (This principle, duly abstracted, was the founda-
tion of the theory of distributions.)

Remark 2.1.  The reader aware of the “virtual work principle” in mechanics
will have recognized the analogy:  There too, fields of forces are tested
for equality by dot-multiplying them by fields of virtual displacements
and integrating, and two force fields are equal if their virtual works always
coincide.  ◊

An obvious generalization of (10) is

(11) – ∫D b · grad ϕ = ∫D f ϕ   ∀ ϕ ∈ C0
1(D),

where  f  is a given function (piecewise smooth).  This means  “div b = f  in
the weak sense”.  (Exercise 2.2:  Check that.)
Remark 2.2.   One may wonder to which extent weak solenoidality depends
on the regularity of test functions, and this is a good question, since of
course the following statement, for instance,

(10') ∫D b · grad ϕ = 0   ∀ ϕ ∈ C0
∞(D),

is logically weake r than (10):  There are fewer test functions, hence fewer
constraints imposed on   b, and hence, conceivably, more weakly solenoidal
fields in the sense of (10') than in the sense of (10).  The notion would be of
dubious value if things went that way.  But fortunately (10) and (10') a r e
equivalent:  This results from the density property proved in Section A.2.3:
Given a  C0

1  test function  ϕ, there exists a sequence  {ϕn}  of  C0
∞(D)  functions
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such that  ∫D |grad(ϕn – ϕ)|2 → 0.  Then (Exercise 2.3:  Check it)
∫D b · grad ϕ = lim n → ∞ ∫D b · grad ϕn  if (10') holds, which implies (10).  ◊

Remark 2.3.  As a corollary of Remark 2.2, any function  ϕ  such that
grad ϕ  is the limit, in the above sense, of a sequence of gradients of test
functions, also qualifies as a test function.  We shall remember this in due
time.  ◊

Remark 2.4.  If the superscript  k  in  C0
k(D)  is thus not crucial (all that is

required of  ϕ, in terms of regularity, is to have a square-integrable
gradient), what about the subscript  0, denoting compact support ?  T h a t is
essential.  If test functions could assume nonzero values on the boundary,
this would put more constraints on  b  than mere solenoidality.  We shall
make use of this too, when treating boundary conditions.  ◊

2.3.2  The “curl” side

All of this cries out for symmetrization:  What we did with the divergence
operator should have counterparts with the curl operator.  This time we
know the way and will go faster.

Let  a  and  h  both belong to  C0
1(E3), and let  D  be as above.  Form  u =

h × a.  We have this other vector analysis formula,

div(h × a) = a · rot h – h · rot a,

and by Ostrogradskii again, we get

(12) ∫D h · rot a = ∫D a · rot h – ∫S  n × h · a,

the second fundamental integration by parts formula, on a par with (9).

Remark 2.5.  Note the formal analogies, and also the differences, between
(9) and (12):  grad  became  rot,  – div  became  rot  too,  ×  replaced the dot,
signs changed in puzzling patterns . . .  Obviously these two formulas are,
in some half-veiled way, realizations of a unique one, which would call
for different notation and concepts:  those of differential geometry.  ◊

By (12), a smooth curl-free field  h  in  D  is characterized by

(13) ∫D h · rot a = 0   ∀ a ∈ C0
1(D).

Again (13) makes sense for non-smooth fields  h, if they are square-
integrable, and hence (now the obvious thing to do):
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Definition 2.2.   A piecewise smooth field   h   which satisfies  (13) will be
said to be curl-free, or irrotational, in the weak sense.
We can prove, in quite the same way as Prop. 2.1, what follows:
Proposition 2.2.  For a piecewise-smooth   h, (13) is equivalent to   rot h = 0
inside regularity regions and  [n × h] = 0  at their interfaces.
Proof.  This should be an exercise.  If  rot h = 0  in the regularity regions D1
and  D2, and  [n × h] = 0  at the interface  Σ, then

∫D h · rot a = ∫D1
 h · rot a + ∫D2

 h · rot a

                  = ∫D1 a · rot h – ∫Σ n1 × h · a + ∫D2 a · rot h – ∫Σ n2 × h · a

                       = –∫Σ [n × h] · a = 0

for all test fields in  C0
1(D), which is (13).  Conversely, assuming (13), we

first obtain  rot h = 0  in  D1  and  D2  separately by the same maneuvers as
above, then, backtracking,

0 = ∫D h · rot a = ∫D1 h · rot a + ∫D2
 h · rot a =

                  = –∫Σ n1 × h · a – ∫Σ n2 × h · a = – ∫Σ [n × h] · a

for all  a ∈ C0
1(D).  Surface values of  a  are not constrained on  Σ, so the

only way this equality can hold is by having  [n × h]Σ = 0.  ◊
One may generalize there too:

(14) ∫D h · rot a = ∫D j · a   ∀ a ∈ C0
1(D),

with  j  given, piecewise smooth.  This means (Exercise 2.4:  Make sure you
understand this)  “rot h = j  in the weak sense”.  Here also,  C0

1(D)  can be
replaced by  C0

∞(D).
This was only a first brush with weak formulations, and the full

potential of the idea has not been exploited yet.  Instead of (10) or (10'),
we could have characterized divergence-free vector fields by the weak
formulation

(15) ∫D b · grad ϕ = ∫S  n · b  ϕ   ∀ ϕ ∈ C∞(DÔ) ,

for instance, which suggests (cf. Remark 2.4) that not only right-hand
sides, as in (11), but also some boundary conditions may be accommodated.
The symmetrical formula on the curl side is

(16) ∫D h · rot a = ∫S  n × h · a   ∀ a ∈ C∞(DÔ) .
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With experience, this flexibility turns out to be the most compelling reason
to use weak formulations.

2.3.3  The uniqueness issue

So we got rid of the ambiguities hidden in the “strong” formulations  rot h
= j  and  div b = 0.  A different kind of problem arises about the uniqueness
of the solution, assuming there is one.  Take  j = 0  in (1), and  µ = µ0  in all
space.  The physical solution is then  h = 0  and  b = 0.  But this is not
implied by Eqs. (1–3):  Take  h = grad ϕ, where  ϕ  is a harmonic function in
all space (for instance, to exhibit only one among an infinity of them,
ϕ(x, y, z) = xy, in  x–y–z  Cartesian coordinates).  Then  rot h = 0, and
div(µ0h) = µ0 ∆ϕ = 0.  So we have here an example of a nonzero static field
that satisfies the equations, although there is no source to create it.

All fields of this kind, however, have in common the property of
carrying infinite energy, which is the criterion by which we shall exclude
them:  We want12 fields with f inite energy.  From Chapter 1, the expression
of the energy of the magnetic field is

(17) Wmag = 1/2 ∫E3
 µ |h|2 = 1/2 ∫E3

 µ–1
 |b|2.

Since  µ ≥ µ0  all over, the first integral is bounded from below by
µ0 ∫E3 |h|2/2;  hence the eligible  h’s  are square-integrable:  || h  || < ∞,
where  ||  ||  denotes the quadratic norm, thus defined:

 || h  || = [∫E3
 |h(x)|2 dx]1/2.

If there is also an upper bound  µ1  to  µ, which we assume, the same
reasoning with the other integral shows that  b  should be square-integrable
as well.

To be consistent with this requirement of finite energy, we shall also
assume that  j, besides being piecewise smooth, has compact support:  this
excludes cases such as, for instance, that of a uniform current density in all
space, which would generate a field of infinite energy.

All that is required of  µ, then (last item in our critical review of
(1–3)), is not to spoil these arrangements.  We want the integrals in (17) to
make sense for all eligible fields  h  and  b, that is, square-integrable
fields, and this is the case if  µ  is piecewise smooth (a reasonable require-

12Note this is a modelling choice, justified in the present situation, not a dogma.

ment, as regards a material property) and if there exist two positive
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constants  µ0  and  µ1  such that13

(18) µ0 ≤ µ(x) ≤ µ1  a.e. in  E3.

Remark 2.6.  The two values in (17) are equal when  b = µh.  But notice we
have there two different expressions of the energy, one in terms of  h, the
other in terms of  b.  It’s customary to call energy of a vector field  b  (any
vector field  b, not necessarily the physical induction) the integral
1
2  ∫ µ–1

 |b|2, and coenergy of  h  the integral  1
2  ∫ µ |h|2.  Note that  energy(b)

+ coenergy(h) ≥ ∫ b · h, with equality only when  b = µh.  ◊

2.4  MODELLING:  THE SCALAR POTENTIAL FORMULATION

At last, we found a problem that, first, is relevant to the situation, and
second, makes mathematical sense:

Given  µ  and  j, piecewise smooth, with  µ  a s in (18) and  j  w i t h
compact support, find piecewise smooth fields  b  and  h  such that

∫E3
 b · grad ϕ = 0   ∀ ϕ ∈ C0

∞(E3) ,

(19) b = µ h,

∫E3
 h · rot a = ∫E3

 j · a   ∀ a ∈ C0
∞(E3) .

Whether there is a solution and how to get it is another story, but at least
we have, for the first time so far, a model.

2.4.1  Restriction to a bounded domain

For the moment, let us return to physics, and criticize this model on the
grounds of an element of the situation which has been neglected up to now:
the large value of  µ  in the magnetic core  M  of the apparatus.  A look at
Fig. 2.6 shows that flux lines will arrive almost orthogonally to the
“magnetic wall”  ∂M  (the boundary of  M).   On the other hand, if  µ  is
large,  h  must be small in  M, since the magnetic energy is finite. 14  We are

13The abbreviation “a.e.” stands for “almost everywhere”, meaning “at all points except
those of some negligible set”.  (The latter notion is discussed in Appendix A, Subsection A.4.2.)
The a.e. clause is a necessary precaution since  µ  has no definite value at discontinuity points.

14Be wary of this line of reasoning, which is correct in the present case, but can lead to
unexpected trouble in some topologically complex situations [Bo].

thus entitled to neglect  M  in the eventual calculation, and to set
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n × h = 0   on  ∂M

as a boundary condition for a problem that will now be posed in the
complementary domain  E3 – M.  
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FIGURE 2.6.   Left:  Expected pattern of field lines inside the box, showing the
existence of a horizontal plane on which  n . b = 0, an annular part of which, called
Sb, will close the box.  Right:  Persective view of the “computational domain”  D
thus delimited, and of its surface.  One has  S = S h ∪ S b, and the “magnetic wall”
Sh  is in two parts,  Sh

0  and  Sh
1.

But one can go farther here, and restrict the domain of interest to the
“central box” of Fig. 2.1, the experimental volume.  Fig. 2.6 explains why:
The air region  E3 – M  is almost cut in two by the magnetic circuit, and
between the North and South poles of the electromagnet, there is an air
gap in which the flux lines go straight from one magnetic wall to the
opposite one, horizontally.  So we can introduce there an artificial boundary
( Sb  in Fig. 2.6), horizontal, which one can assume is spanned by flux lines
(this is only approximately true, but a legitimate approximation), and
therefore 

n · b = 0   on  Sb.

Consequently, let us restrict our computational domain to the part of the
inner box below the plane of  S b, and call  D  this region.  Its boundary  S  is
thus made of  Sb  and of the part of  ∂M  which bounds the inside of the
box, which we shall denote by  S h.  Hence our boundary conditions, which,
combined with the strong form of the magnetostatics equation, lead to
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(20) rot h = 0  in  D,                              (21)            n × h = 0   on   Sh,

(22)    b = µ h  in  D,     

(23)       div b = 0     in  D,                          (24)            n · b = 0   on  Sb.

We note that  S h  is in two parts,  Sh
0  and  Sh

1, corresponding to the two
poles of the electromagnet.

This calls for a few remarks.  First, let’s not forget that materials of
various permeabilities can be put inside  D, so we must expect discontinuous
fields, and weak formulations are still in order.

The second remark is about the symmetry of the box, and of its content.
In the “Bath cube” experiment, four identical aluminum cubes (hence the
nickname) were put inside the box, symmetrically disposed, so that it was
possible to solve for only a quarter of the region, since the whole field is
then symmetrical with respect to the vertical symmetry planes, hence
n · b = 0  there.  The equations are thus the same, provided  D  and  Sb  are
properly redefined:  D  as a quarter of the cavity, and  S b  as a quarter of
the former  Sb  plus the part of the symmetry planes  inside the box.  We
shall do that in Chapter 6, but we may ignore the issue for the time being.

Third remark, the above display (20–24) does not say anything about
the source of the field.  That was  j, the current density in the coil, which
is now out of the picture.  This lost information must be reintroduced into
the formulation in some way.

S
b

Sh
0

S h
1

c

τ

 γ 
M

c
I I

FIGURE 2.7.  Left:  Applying Ampère’s theorem to the path  γ  shows that the mmf
along  c  is approximately equal to the DC intensity  I.  Right:  topological aspects of
the situation.

Figure 2.7 suggests how it can be done.  Consider a circuit  γ   which,
except for the part  c  inside  D  that links opposite poles, is entirely
contained in  M.  By Ampère’s theorem, the circulation of  h  along  γ   is
equal to  I, the DC intensity in the coil.15  But  µ  being very large in  M,
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the field  h  is so small there that the circulation along  γ   is approximately
equal to the circulation along the sub-path  c.  Since we already assumed
h = 0  in  M  in this modelling, we consistently set

(25) ∫c τ · h = I,

where  τ  is the field of unit tangent vectors along  c  (Fig. 2.7).  (Exercise
2.5:  Show that any path  c  from  Sh

0  to  Sh
1  will give the same circulation.)

Now, common sense says that (20–24) and (25) do uniquely determine the
field, and the mathematical model we are building had better have this
property (which we’ll eventually see is the case).

There is another possibility:  We could specify the magnetic flux  F
through the box instead, like this:

(26) ∫S1
h  n · b = F.

(Exercise 2.6:   Show that other surfaces than  Sh
1  can be used in (26) with

the same result.  How would you characterize them?)  Of course,  F  is not
known here, but this is not important for a l inear problem:  Just solve with
some value for  F, get  I, and scale.  In fact, since we want to compute the
reluctance of the system, which is by definition the ratio  R = I/F, the flux
is the objective of the computation if  I  is known, and the other way
around.  We may thus solve (20–24) (25) and then compute  F, using some
approximation of formula (26), or solve (20–24) (26), with an arbitrary
nonzero value for  F, and then compute  I  by (25).  This alternative reflects
the symmetry between  b  and  h  in the problem’s formulation.

We shall return to this symmetry (Chapter 6).  We now break it by
playing the obvious move in the present situation, which is to introduce a
magnetic potential.

2.4.2  Introduction of a magnetic potential

Indeed, since the field  h  we want must be curl-free, it is natural to look
for it as the gradient of some function  ϕ.  The boundary condition  n × h = 0
on  Sh  is then satisfied by taking  ϕ  equal to a constant there.  (This is
general:  Magnetic walls are equipotentials for  ϕ  in static contexts.)   Since
Sh  is in two pieces, there are two such constants, one of which can be  0.

15Notice how the equality of intensities in the energizing coils is necessary in this reasoning:
Otherwise, we could not assume  µ  infinite in  M  without contradiction.  This is a well-known
difficulty of the theory of the transformer, which we shall ignore here.

The other one must then be equal to  I, after (25).
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All these considerations lead us to the definition of a class of admissible
potentials:  piecewise smooth functions  ϕ, which satisfy all the a priori
requirements we have about  ϕ  (finite energy, being equal to  0  or  I  on  S h) ,
and we shall select in this class t h e potential which solves the problem.
This is, still grossly sketched, the functional point of view:  Define a
functional space of eligible candidates, characterize the right one by setting
tests it will have to pass, and hence an equation, which one will have to
solve, exactly or approximately.

To define admissible potentials, let’s proceed by successive reductions.
First, a broad enough class:

Φ = {all  ϕ’s  piecewise smooth (over the closure of  D)}.

(If  D  was not, as here, bounded, we should add “such that  ∫D|grad ϕ|2  is
finite”, in order to take care of the finite energy requirement.  This is
implicit in the present modelling, but should be kept in mind.)  Next,

(27) ΦI = {all  ϕ ∈ Φ :   ϕ = 0  on  Sh
0  and  ϕ = I  on  Sh

1}

where  I  is just a real parameter for the moment.  In particular, we shall
have  Φ0 = {ϕ ∈ Φ :   ϕ = 0  on  Sh}.  If  ϕ  is in  ΦI  for some value of  I, it means
that  n × grad ϕ = 0  on  Sh, and thus Eqs. (20) and (21) are satisfied by  h =
grad ϕ, if  ϕ  is any of these potentials.  Last, we select the given value of
I, and now, if  ϕ  is in t h i s  ΦI, (25) is satisfied.

Eligible potentials thus fulfill conditions (20), (21), and (25).  To deal
with the other conditions, we request  b  (≡ µ grad ϕ)  to satisfy (23) by
using the weak solenoidality condition.  But since the set of test functions
is left to our choice , we may do better and also check (24), all in one stroke:
Proposition 2.3.  I f  ϕ ∈ ΦI  is such that

(28) ∫D µ grad ϕ · grad ϕ' = 0   for all test functions  ϕ'  in  Φ0,

then the field  b = µ grad ϕ  veri f ies (23) and (24).
(Pay attention to the notational shift:  Since from now on we shall have
the eligible potentials on the one hand, and the test functions on the other
hand, the latter will be denoted with a prime.  This convention will be
used throughout.)
Proof.  Set  b = µ grad ϕ.  This is a piecewise continuous field.  Since  Φ0

contains  C0
∞(D), we have  div b = 0  in the weak sense, as required.  But

since there are test functions in  Φ0  which do not belong to  C0
∞(D)  (all

those that do not vanish on  Sb), the implications of (28) may not have
been all derived.  Starting from (28), and integrating by parts with formula



2.4  MODELLING:  THE SCALAR POTENTIAL FORMULATION 53

(9), we get

0 = ∫D b · grad ϕ' = – ∫D ϕ' div b + ∫S  n · b  ϕ' = ∫Sb  n · b  ϕ'  ∀ ϕ' ∈ Φ0,

since  div b = 0  a.e. and  ϕ' = 0  on  S h  by our choice  of test functions.  What
is thus left is the following implication of (28):

∫Sb  n · b  ϕ' = 0    ∀ ϕ' ∈ Φ0,

which can be satisfied, since values of  ϕ'  are unconstrained on  Sb, only  by
n · b  vanishing on this part of the boundary.  ◊

We are thus entitled to set a problem:

(29) f ind  ϕ  in  ΦI  such that (28) h o l d.

This (mathematical) problem, more accurately described as an equation,16

is the weak formulation, in scalar potential , of our (physical) problem.
We just proved that if there is a solution, it will satisfy all the requirements
of the modelling.

2.4.3  Uniqueness

No need to underline what this proof owes to that of Prop. 2.1.  (Notice
that the ideas of Remark 2.4 and Eq. (15) also have been exploited, to
some extent.)  But the serendipity by which  Φ0  happened to be the right
space of test functions calls for an explanation, which Fig. 2.8 will suggest:
In the linear space  Φ, the  ΦIs  form a family of p a r a l l e l affine subspaces,
and are thus all isomorphic with the vector subspace  Φ0.  In particular
the difference between two eligible potentials  ϕ1  and  ϕ2, being in  Φ0,
qualifies as a test function.

Now, (29) can be construed as a system of linear equations, to be satisfied
by  ϕ, one equation for each test function engaged.  Even though we are
dealing here with infinite-dimensional spaces, and thus, so to speak, with
an infinity of unknowns, the general rule of algebra that  there should be
“as many equations as unknowns” in a properly formed linear system is

16In the more precise language of Appendix A, an equation is the problem consisting in
finding all the values of the free variable in some predicate.  Here the free variable is  ϕ, and
the predicate is (28);  it consists of a list of subpredicates, indexed by the bound variable  ϕ'.
Note again the importance of the “for all” clause in (28) in this mechanism.  Without it, we
wouldn’t have an equation, only nonsense.

still in force:  Fig. 2.8 shows that our choice of test functions obeys this



54 CHAPTER 2   Magnetostatics:  “Scalar Potential” Approach

rule automatically, thanks to the one-to-one correspondence between  ΦI

and its parallel vector subspace.

0 ϕ '

ϕ1

ϕ2

Φ0

ΦI

Φ∗

FIGURE 2.8.  Geometry of the variational method.  The “space” of the picture
represents  Φ, and the parallel “planes” represent  ΦI  and  Φ0.  The latter contains
the origin.  Dots and arrows signal points and vectors, respectively, in these infinite-
dimensional spaces.  Φ∗  is an ad-hoc notation for the set union  ∪{ΦI :  I ∈ IR},
which does not fill out  Φ.

This proves nothing yet, of course.  But the heuristic principle thus
suggested is of enormous value:  To find the weak form of a problem, set up
the affine space of all a priori eligible solutions, then use the elements of
the parallel vector subspace as test functions.

This principle is quite flexible:  “Eligible” depends on which equations
and boundary conditions we can, and wish to, enforce a priori, and the
others are automatically taken into account by weak formulation of the
remaining requirements of the model (cf. Exer. 2.9).  Here, we chose to
enforce the equations relative to  h  (which is why this method can be
depicted as “h-oriented”), but we might as well have focused on the
equations relative to  b, hence a  b-oriented method (the opening move of
it, of course, would be to introduce a vector potential,  b = rot a).  We’ll do
this in Chapter 6.  There is also some leeway with the constant  I, which
was imposed here, but could have been left in charge of the weak
formulation, as we shall see also.

As a first testimony of the power of the principle, let us prove this
“uniqueness” result:
Proposition 2.4.  Problem (29) has at most one solution.
Proof.  Suppose there are two solutions  ϕ1  and  ϕ2.  Then

(30) ∫D µ grad(ϕ1 – ϕ2) · grad ϕ' = 0   ∀  ϕ'  in  Φ0.

But (see Fig. 2.8),  ϕ1 – ϕ2  is one of the test functions, and for t h a t one, (30)
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yields  ∫D µ |grad(ϕ1 – ϕ2)|
2 = 0, hence (cf. (18))  grad(ϕ1 – ϕ2) = 0, which

means  ϕ1 = ϕ2, since they coincide on  Sh.  ◊
Remark 2.7.  This prompts the question, irrelevant here, but sensible in
other circumstances, “What if  Sh  is empty?”  Then, simply, the potential
is not unique, but the field  h = grad ϕ  is, which is generally what one is
interested in.  ◊

If this was linear algebra, Prop. 2.4 would solve the problem!  For in
finite dimension, uniqueness forces existence,  as the old saying goes, when
the number of equations and unknowns coincide.  (Exercise 2.7:  Why?)  But
here we deal with elements of an infinite-dimensional space, in which
things are not that simple.  Whether and when problem (29) has a solution,
the existence issue, will be the concern of the next chapter.  But before
leaving the present one, something you may have been surprised to see
de-emphasized:

2.4.4  Laplace, Poisson, Dirichlet, and Neumann

As a consequence of (23) and (24), the solution of (29) will satisfy

(31) – div(µ grad ϕ) = 0     in  D,

(or at least, inside regions of regularity—but we shall stop reminding that
all the time, from now on), and

(32) ϕ = 0   on  Sh
0,    ϕ = I   on  Sh

1,

(33) µ ∂nϕ = 0   on  Sb,

where  ∂nϕ  is the notation in force here for the normal derivative of  ϕ  at
the boundary, often denoted as  ∂ϕ/∂n.  Equation (31) is an immediate
generalization of the Laplace equation   ∆ϕ = 0, to which it reduces if
µ = µ0  in all  D.  The expression Poisson problem  refers to (31) with a
nonzero right-hand side, which we don’t have here, but could easily handle
(cf. (11) and Exer. 2.2).  One calls (32) and (33) the Dirichlet and Neumann
boundary conditions, respectively.  Here the latter are homogeneous (right-
hand side equal to 0), but non-homogeneous similar conditions can be ac-
commodated by the above method, as we’ll see later.

This Dirichlet vs Neumann opposition is classical and quite important,
but here we should rather focus on the f i e lds  h  and  b  than on the potentials,
and the  n × h  vs  n · b  contrast is thus more topical.  Also more important
conceptually is the distinction between essential boundary conditions, like
(32), which are built into the very definition of the set of admissible
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solutions, and natural conditions like (33), which are enforced by the weak
formulation.

EXERCISES

Exercise 2.1 is on p. 34.  Exers. 2.2 and 2.3 are on p. 44, and Exer. 2.4 p. 46.
Exercises 2.5 and 2.6 are on p. 51, and Exer. 2.7 on p. 55.
Exercise 2.8.  Suppose a part of  D  contains a permanent magnet, character-
ized by  b = µ0(h + m), where  m  is a given field, the rest of  D  being air.
Show that the weak formulation, f ind  ϕ ∈ ΦI  such that

(34) ∫D µ0 grad ϕ · grad ϕ' = –  ∫D  µ0 m · grad ϕ'  ∀ ϕ' ∈ Φ0,

is a correct interpretation of the problem.
In case  m  is uniform over a region  ∆  ⊂ D,
and 0 outside (inset), show that (34) can be
written

(35) ∫D µ0 grad ϕ · grad ϕ' =

                         ∫Σ  n · (µ0 m)  ϕ'   ∀ ϕ' ∈ Φ0,

where  Σ = ∂∆ .
Exercise 2.9.   Consider the space  Φ∗ = ∪I Φ

I of Fig. 2.8.  Each  ϕ ∈ Φ∗

belongs to one of the  ΦIs, so let’s define  J  as the map that assigns to  ϕ
the corresponding value of  I.  Let  F  be given.  Show that if  ϕ ∈ Φ∗

satisfies

(36) ∫D µ grad ϕ · grad ϕ' = F J(ϕ')   ∀ ϕ' ∈ Φ∗,

then  b = grad ϕ  verifies (23), (24) and (26).
Exercise 2.10.  Here the artificial boundary  S b  has been placed in a position
where it was known in advance that  n · b = 0.  It may happen that the
flux is thus known on some conveniently placed surfaces, but not null.  What
to do then?

S S

S
h

Sh

∆ D
m

nΣ

b b
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HINTS

2.1.  The definition doesn’t say bounded regions.  Recall that continuous
functions are bounded on closed bounded (hence, compact) regions of a finite-
dimensional space.
2.2.  Just redo the proof of Prop. 2.1, reintroducing  f  at the right places.
Observe the way a minus sign appears.
2.3.  Cauchy–Schwarz.  Observe (this is for experts) that a certain condition
on the supports of the  ϕns  should be satisfied.
2.4.  Same as Exer. 2.2.
2.5.  Build a circuit on which to apply Stokes.
2.6.  Build a volume to which Ostrogradskii–Gauss may apply, part of its
surface being  Sh

1.
2.7.  The question is, if  A  is an  n × n   matrix, and  b  an  n-vector, why does
uniqueness of  x  such that  Ax = b  imply the existence of a solution, whatever
the right-hand side?
2.8.  All that matters is  div b = 0, where  b = µ0 (m + grad ϕ), and the proof
of Prop. 2.3 handles that.  For (35) vs (34), apply (9) to  ∆ .
2.9.  Φ∗  being larger than  Φ0, the proof of Prop. 2.3 can be recycled in its
entirety, hence (23) and (24).  So concentrate on (26), using (9).
2.10.  Imitate (35), which can be understood as describing a flux injection
n · (µ0 m)  on  Σ.

SOLUTIONS

2.1.  The constant 1 is not integrable over all  E3, so the restriction to bounded
domains is certainly necessary.  Now suppose  f  is smooth over each region
Ri  of a finite family.  The way we understand “over”,  f  is smooth, and in
particular continuous, in a bounded domain  Di  containing the closure of
Ri ∩ D, which is thus compact, so  f  is bounded there, hence integrable.
Pieces being in finite number,  f  is integrable on  D.
2.3.  Since  supp(ϕ)  is compact, one can build the  ϕns  so that there exists a
compact  K  containing all the  supp(ϕn).  Then (Exer. 2.1)  b  is bounded on
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K, and hence, applying the Cauchy–Schwarz inequality,

|∫D b · grad(ϕ – ϕn)|
2 ≤ ∫D |b|2  ∫D |grad(ϕ – ϕn)|

2

tends to zero.
2.5.  Take  c 1  and  c2  from  Sh

0  to  Sh
1, with the same orientation, and join

the extremities by two paths lying in  Sh
0  and  Sh

1  respectively, in order to
make a closed circuit.  As  rot h = 0, and by the Stokes theorem, the
circulations along  c 1  and  c2  are equal (those along the boundary links are
0 by (21)).  One says that  c1  and  c2  are homologous.  (The relation between
them is an equivalence, called relative homology modulo  Sh.  We’ll have
more to say about this in Chapter 5.  Cf. [GH].)
2.6.  See the inset.  Surface  C  is what is commonly called a “cut”:  Its
boundary is entirely in  Sb, and it separates  D  into two parts, each containing
one piece of  Sh.  Moreover,  C  has an external
orientation (provided by a normal field  n),
compatible with that of  S h

1.  Now, as  n · b = 0
on  Sb, the fluxes through  C  and  S h

1  are equal,
by Ostrogradskii, since  div b = 0  in  D.  All
possible cuts of this kind will do, including  Sh

1
and  Sh

0, but the latter must be oriented the other
way with respect to  S.  Again we have here
an equivalence relation (relative homology, but
now modulo  Sb), and “cuts” are elements of a same class of surfaces, of
which one says they are homologous (mod  Sb) .  We’ll return to this in
Chapter 4, and again, more formally, in 5.2.5.
2.7.  Because then  A  is regular.
2.8.  ∫D  m · grad ϕ' = ∫∆  m · grad ϕ'  = – ∫∆ div m  ϕ' + ∫Σ  n  . m ϕ'.  If  div m ≠ 0,
there is no special avantage to this formulation over (34), but otherwise
(35) may be easier to implement in the subsequent finite element modelling.
Be careful about the correct orientation of the normal on  Σ  when doing
that.  (You may worry about what happens when  ∆   touches  S.  This is a
good question, but no more a simple exercise.)
2.9.  By (9), and using the information brought by the proof of Prop. 2.3
(div b = 0,  n · b = 0  on  Sb), plus  ϕ' = 0  on  Sh

0, (36) reduces to

(37) F J(ϕ') = ∫Sh n · b  ϕ' ≡ ∫Sh
1
 n · b  ϕ'  ∀ ϕ' ∈ Φ∗,

and since the value of  ϕ'  on  Sh
1  is precisely  J(ϕ'), by definition of  J, we

have  F J(ϕ') = (∫Sh n · b) J(ϕ')  for all  ϕ', hence  ∫Sh n · b = F.

Sh
0

S
h
1 n

S
b

C
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Now,  ϕ  being known,  J(ϕ)  has a definite value  I, and the desired
reluctance is  R = I/F.  This trick, by which the essential boundary constraint
ϕ = I  on  Sh

1  (condition (25)) has been exchanged for the natural boundary
condition (37), is known as the dualization of the constraint (25).
2.10.  Let  g  be the known value of  n · b  on  Sb.   Prolongate  g  to all  S  by
setting  g = 0  (or any value, it doesn’t matter) on  Sh.  The relevant weak
formulation is  f ind  ϕ ∈ ΦI  such that

∫D µ grad ϕ · grad ϕ' = ∫S  g ϕ'  ∀ ϕ' ∈ Φ0.

Indeed, (9) yields  ∫S n · b  ϕ' = ∫S  g ϕ'  ∀ ϕ' ∈ Φ0, therefore  n · b = g  on  S b,
where the values of  ϕ'  are free.
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