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Abstract—This paper presents a survey and a number
of experiments with the (relatively new) Integrated Field
Equations method for Maxwell’s equations. It starts out
with a summary of the method, followed by a number
of test cases in which its special properties, in particu-
lar its ability to handle high contrast using coarse grids
is demonstrated. The method gives rise to a rather spe-
cial set of equations and new strategies to solve these
are presented as well, in particular the use of hierarchi-
cal semi-separable representations either in a direct solver
or through a Krylov iteration strategy. New in the paper
are the time-domain integration version of the method and
the solution strategies.
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I. OUTLINE OF THE METHOD

A computational technique (the Integrated Field Equa-
tions or IFE method) is presented that models time-
domain (pulsed) electromagnetic (EM) fields in strongly
heterogeneous media. In media of this kind, the constitu-
tive parameters can jump by large amounts upon crossing
the boundary surface of any of the elements of the geomet-
rical discretization. On a global scale, the EM field com-
ponents are, therefore, not differentiable and Maxwell’s
equations in differential form cannot be used: one has to
resort to some sort of integral form of the EM field rela-
tions as a basis for the method of computation. An appro-
priate integral form is provided by the classical interrela-
tions between the circulation of the electric/magnetic field
strength along a closed curve and the (time rate of change
of) the magnetic/electric flux passing through some sur-
face with the circulation loop as boundary. For these to
hold, only integrability is needed, which condition is im-
posed in accordance with the physical condition of bound-
edness of the field quantities. To satisfy the constitutive
relations (that are representative of physical volume ef-
fects), an analytical continuation of the boundary repre-
sentations of the field components on the boundary of an
element into its interior is needed. A consistent algorithm
that meets all of these requirements is constructed, us-
ing a simplicial geometrical discretization, combined with
piecewise linear representation of the electric and mag-
netic field components along the edges of the elements,
a piecewise linear representation of the electric and the
magnetic flux densisity components along the normals to

the faces, piecewise linear extrapolations into the interior
of the elements and taking constant values of the consti-
tutive coefficients (or relaxation functions) in these inte-
riors. In time, also piecewise linear representations are
used. This procedure can be proved to converge to the
local EM field equations and constitutive relations on a
scale where the discontinuous material behavior no longer
applies.

As in any EM problem, radiation takes place into an un-
bounded embedding of the configuration of interest. This
embedding we take to be free space. To handle this as-
pect, the bounded domain of computation is embedded
in a Cartesian Perfectly Matched Embedding that is con-
structed via a (causal) space-time coordinate-stretching
procedure, truncating this embedding, and invoking a pe-
riodic boundary condition on the boundary of the re-
maining 3-rectangle. The causality requirement on the
coordinate-stretching functions ensures the uniqueness of
the solution of the resulting field problem. In the do-
main of interest, the field values are only disturbed by the
amount of spurious field propagation due to the periodic
repetition of the configuration, which disturbance can be
made as small as desired by providing the matching layers
with the proper amount of attenuation. Note that in the
(artificial) embedding configuration large jumps in param-
eters may occur, in addition to the ones in the physical
domain of interest.

Since the whole procedure only uses continuously vary-
ing quantities in space-time in the field representations,
irrespective of how wildly the constitutive properties of
the configuration vary with position in space, the method
is believed to be fully compatible with the physics of the
type of configuration at hand, which no numerical method
based on the differentiability of the field quantities can
claim.

II. EQUATION SOLVERS

The IFE method in the frequency domain gives rise
to a system of equations which, in the 2D case, contains
roughly twice as many equations as in the more direct
differential versions (such as FDTD), because of the ex-
tra constitutive equations. It is, however, very sparse (as
in the other methods based on volume finite elements),
and has a double band structure with somewhat irreg-
ularly ragged bands. Much of the difficulties with this
method can be solved by using adequate (and new) nu-
merical methods. For this, the structure of the matrices
has to be exploited systematically, especially in the 3D
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case where the number of equations can be very large.
The goal is to find the Moore-Penrose solution of the set
of equations, i.e. a solution that averages the extra equa-
tions out. We present both a direct method and an itera-
tive method to solve these. In both cases the structure of
the matrices is captured through the use of "Hierarchical
Semi-separable’ solvers, a method pioneered in [1]. The
method is based on ideas from [2], [3] and [4].

The presentation will give a survey of the new type of ef-
ficient algorithms we propose. With an efficient hierarchi-
cally semi-separable representation of the system matrix,
both matrix-vector multiplication and direct solutions can
be done efficiently, or more precisely, their complexity
goes linearly with the size of the matrices. However, the
direct solution method does not scale well with the rank
of the off-diagonal sub-matrices. This limits the usage of
the direct method in 2D and 3D configuration. We can
then apply a model reduction method on the original HSS
representation to find low rank approximations for the off-
diagonal matrices. The resulting overall approximations
can be used as preconditioner. With such preconditioning
methods, efficient matrix-vector method as well as other
efficient HSS algorithms, any Krylov iterative method can
be combined with the HSS representation.

In the case of time-integration and with the use of the
trapezium rule, a concatenation of locally coupled matri-
ces with the structure described above arises. Because the
integration method is implicit, we have devoted special
care to combine the Moore-Penrose (least square) method
with the progressing integration. More precisely, we pro-
pose a local schema with a limited time horizon, so that
the time progression can be solved efficiently as well.

III. NUMERICAL RESULTS

We present in addition a number of numerical results
for the 2D case, in particular results that illustrate (1)
the contrast properties of the method and (2) the use
of PML boundary conditions. The prototype case is the
EM field for a problem in which the field quantities are
independent of the z-coordinate, with a current source (a
wire in the z-direction), producing an electric field that is
non-zero only in the z-direction and a magnetic field that
lays entirely in the xy-plane. The xy-plane is partitioned
in domains with starkly varying contrasts. In addition,
we show experimental properties of the various methods
used to solve the resulting system of equations efficiently.

IV. FURTHER WORK

The extension of the proposed method to the 3D case
poses a number of new issues. We briefly indicate how
they can be tackled. In the 3D case the redundancy
amounts roughly to a factor 4, i.e. the number of equa-
tions is roughly four times the number of unknowns. The
structure, while still very sparse, is now of the type 'mul-
tiple block band of multiple block bands’ where 'multiple’
stands for a factor 3, due to the lexicographic ordering
of the finite elements. In addition, there is the progres-
sion of the integration in the time domain. While such

a structure may seem very hard to handle in a Moore-
Penrose context, we do have new methods to apply, and
even methods that claim to be linear in the number of un-
knowns [5]. They are based on a combination of HSS tech-
niques [1], [6]-[8] and model reduction methods derived
from time-varying system theory [4]. Combined with an
iterative Krylov-space solver and a time-horizon progres-
sion, it should be possible to squeeze as much efficiency
as possible out of the structure of the matrices.

V. CONCLUSIONS

The IFE method holds considerable promise to model
electromagnetic effects in integrated circuits, where high
contrasts between different types of materials is the rule
and very few regular structures are present.
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