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Abstract—Simulating land mine detection scenarios
poses a challenge regarding the discretisation of the metal
detector and the much smaller metal parts of the mine.
Here, a domain decomposition method with Lagrange mul-
tipliers is presented. This allows a magneto-quasistatic
simulation with locally very fine mesh around the land
mine. This approach solves only one system of equations

for the fine and coarse part together.
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I. INTRODUCTION

Metal detectors are one of the best land mine detection
device due to the good percentage of located mines to
non-located ones, the easy handling and the low price.
However the metal detectors react on every metal piece in
the soil regardless if it is a mine or not. The rate between
located mine and sounding signal is between 1/100 and
1/1000 [1].

To reduce this false alarm rate it is proposed to pre-
calculate signatures of standard mines, save them in a
database and compare the measured signatures with the
data from the database. For the calculation of mine sig-
natures different resolutions for the metal detector and
the small metal parts of the land mine, which are about
two orders of magnitude smaller, are mandatory. The
discretisation of such a problem with standard methods
leads either to a huge amount of mesh points, which re-
sults in unacceptable time consuming computations or the
required resolution is not reached at all. In this paper
the calculation domain is decomposed into two parts: the
land mine is discretised with a fine mesh while a coarser
mesh is chosen for the rest. Both subdomains are coupled
with interface conditions, which results in a new system
of linear equations for the whole calculation domain.

II. MAGNETO-QUASISTATIC EQUATIONS

Metal detectors work either with time-harmonic or
pulsed signals for the transmitting coil. The considera-
tions of this paper are restricted to the time-harmonic
excitation. In this case the displacement current den-
sity is much smaller than the total current density such
that wave propagation effects can be neglected and the
magneto-quasistatic approach can be applied. With the
source current density Js the equation for the magnetic

vector potential A is given as
1 .
curl—curlA +iwc A = Js, (1)
I

where i and o are permeability and conductivity, respec-
tively. The angular frequency is denoted by w and the
imaginary unit by .

In the Finte Integration Technique (FIT) [2], [3] the
electromagnetic field quantities are represented on a dual
grid pair. The analytical grad, div and curl operators are
transferred to the primary and dual grid operators G, G,
S, S, C and C, respectively. It can be shown that the
analytical properties, a curl field is free of sources and a
gradient field is irrotational, are also valid for these opera-
tors, i.e. SC=SC=0 and CG=0. The material relations
are transferred approximately with the help of the ma-
terial matrices for permeability M, -1 and conductivity
M,. Let a denote the discrete magnetic vector poten-
tial, which is located on the primary grid edges and j the
discrete vector of source currents through the dual grid
facets. Then, in the framework of FIT, equation (1) leads
to

(CM,,—1C +iwM,)a = j. (2)

The system matrix K is defined as
K :=CM, .C +iwM, (3)

for further considerations.

III. DOMAIN DECOMPOSITION APPROACH

The large difference in size of the metal detector (about
30 cm) and the metal parts in modern land mines (of-
ten only few millimeters) as well as the distance between
both, which is several magnitudes greater than the metal
parts, affords an efficient discretisation strategy. Here,
a domain decomposition scheme is presented, where the
computational domain is subdivided in non-overlapping
subdomains. The same approach has been applied in [4],
for the calculation of low-frequency electric current den-
sities in high resolution 3D human anatomy models. A
fine mesh is applied to the first subdomain containing the
small metallic piece and operators referring to this sub-
domain are denoted with the subscript f. The rest of the
computational domain, where the detector coil is located,
is discretised with a coarser mesh and the operators will
be denoted with the subscript ¢. For both subdomains the
system matrices K. and Ky are constructed separately.
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The domains are non-overlapping and have a com-
mon interface I'. The grids of the subdomains are non-
matching, i.e. coarse grid points on I' are not necessarily
fine grid points on I'; too. On the interface I the magnetic
vector potential and the normal component of the current
have to be continuous. The grid points on the common
interface I' are determined by the selection operators Q.
and Qg, that is

ﬁc,l—‘ = Qcﬁcv (4)
Qray. (5)

Since both grids are non-matching a prolongation oper-
ator B : I'c — I'y is needed on the interface. Here a
bilinear interpolation is chosen to calculate the magnetic
vector potential of the fine grid points at the interface.
Then the interface condition for the magnetic vector po-
tential reads as:

asr

Ba.r—-a;r = 0, (6)
BQ.a.—-Qyray = 0. (7)

The transpose BT : T’ ¢ — I'c is applied for the calculation
of the normal component of the currents in the coarse
grid points of I'. Both system matrices and the interface
conditions are assembled in the following system of linear
equations

K. 0 QBT a. Jse
0 Ky _Q§ ag | = j\s,f , (8)
BQc _Qf 0 A 0

where A denotes the vector of Lagrange multipliers.

The system above represents a saddle-point problem,
which can be solved by various algorithms as suggested
in [5]. Common iterative methods for such problems are
the Uzawa algorithm and the Arrow-Hurwicz algorithm.
A major disadvantage of both algorithms is the slow con-
vergence rate. Another possibility is the application of a
Krylov-subspace solver like BICG or MINRES together
with an efficient preconditioner. The preconditioner is of-

ten based on an approximation of the Schur complement
S(D) defined by

S(D) = BQ.D;'QTBT - Q;D;'Q%,  (9)

which consists of an approximation of the system matrices
D, =diag(K.) and Dy=diag(Ky). The following precon-
ditioner P(D) is proposed in [6]:

P(D) =[D;',D;*, 571 (10)
It turned out that diag(P(D)) already presents a good
preconditioner, the construction of which requires much
less memory compared to P(D).Yet, the residual of the
algorithm using P (D) itself is smaller.

IV. RESULTS

As model problem a circular transmitting coil with the
source current of 1 A and frequency of 2400 Hz represents

Fig. 1. Electric field E of a transmitting coil above a metallic sphere.

the metal detector. It is located above a metallic sphere
with conductivity of 1.7 % 10" S/m. The receiving coil is
modelled as a difference coil at the same position as the
transmitting coil. For this model both coils are assumed
to be infinitely thin. Figure 1 shows the electric field E
for this geometry. The box shows the size of the sub-
domain with fine discretisation, which is placed around
the aluminium sphere. A convergence study and further
examples will be given in the full paper.

V. CONCLUSION

In this paper a domain decomposition method with La-
grange multipliers for magneto-quasistatics has been pre-
sented. By subdivision of the computational domain an
efficient discretisation of land mine detection scenarios
may be obtained. For the resulting saddle-point prob-
lem two different solution methods have been tested. The
proposed approach has been applied to the simulation of
a model problem.
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