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Abstract - This paper investigate, develop and validate a new-advanced analysis technique and design tool special tailored for the optimal design of real 3D electromagnetic devices, based on a totally new and innovative numerical approach which combines the state-of-the-art extended Finite Element Method and the Level Set Method. This new approach eliminates the conventional use of discrete elements and provides efficient, stable, more accurate and faster computation schemes, without remeshing at each optimisation step.
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I. Introduction
The use of geometrical optimisation tools in the early stage of the develop​ment process offers new potential in the process chain. The development process becomes faster and more efficient by using shape and topology optimisation. This results in parts and devices that are lighter, better performing and more durable, which constitutes a competitive advantage. Although significant progress has been made in the last decade in developing production quality CAD tools there is still a high need for more effective and fully automated 3D optimisation tools that are CAD integrated. This is driven by the ever increase in model complexity and the needs to address and incorporate design and manufacturing requirements at the very early stages [1], [2], [13], [15], [16]. 
When shape or topology optimisation using Finite Element Methods (FEM) is involved, a large number of mesh adaptations or even re-meshes is required during the optimisation process. After each optimisation a new geometry is obtained and a new distorted mesh is needed. When, during the optimisation process excessive mesh distortion occurs, the solution accuracy is influenced and a totally new mesh is to be constructed. Making robust algorithms for 3D shape and topology optimisation tools based on this approach remains a real problem i.e. book keeping, mapping recalculation, etc.

Recent developments in mechanical engineering based on modeling discontinuities such as material interfaces without remeshing provide challenging opportunities. This is done using the so called eXtended Finite Element Method (XFEM) [3], [4], [5]. On the other hand very powerful mathematical techniques are available now in order to deal with moving boundary problems [10], [11], [12] as the Level Set Method (LSM). Using LSM instead of performing geometrical operations, a convection equation is solved providing the new geometry, including topology changes.
Within this context, the present paper aims to explore topological and shape optimisation of electromagnetic devices, based on an innovative numerical approach that couples:

· the efficiency of the XFEM with

· the flexibility of the LSM used for computing the movement of the discontinuities and hence the modeling of complex topological changes.

The result is a powerful 3D analysis technique and design tool for geometrical optimisations that demonstrates:

· outstanding flexibility of handling topological changes;

· fidelity of boundary representation and

· a high degree of automation,

comparing favorably with other methods in the literature [16].
II. State-of-the-art and Degree of Innovation
Discontinuities, as for instance the moving material interfaces, play an important role in many types of optimisation problems. Scientific world has given more and more attention in the last years to the problems where it is necessary to model the motion of these kinds of discontinuities. Due to the fact that standard FEM are based on piecewise differentiable polynomial approximations, they are not well suited to problems where the solutions contain discontinuities, discontinuities in the gradient, singularities or boundary layers. Typically, FEM requires [1], [2]:

· significant mesh refinement or 

· meshes that conform with these features,

to yield acceptable results.

These features occur in a diversity of problems, including fracture mechanics, solidification, two-phase flow, contact, composites, etc. [3], [4], [5], [6], [7], [8], [9]. In response to this deficiency of standard FEM, enriched or extended finite elements have been developed in the last years as an alternative to the existing methods. An initial form of the method is reported in Belytschko and Black [7] and Moes, Dolbow and Belytschko [14]; the methodology has recently been generalized in Belytschko et al [13]. The approach is based on a local partition of unity as in: Chessa et al. and Melenk and Babuska (1996). 

To our knowledge, this method has not yet been applied to electromagnetic optimisations, neither 2D nor 3D applications. We consider that the proposed approach based on the efficiency of the XFEM and the flexibility of the LSM for the optimal design of electromagnetic devices is original and innovative and provides more efficient, stable, accurate and faster solutions in comparison with any other available tools. 

III. Methodology
The developed methodology is based on:

· the governing Partial Differential Equations (PDEs) are solved using the XFEM. The goal of the XFEM is to expand the approximation function space of standard FEM such that they contain or are closer to the solution function space. In XFEM the discontinuities are completely independent of the FE mesh: they can cross elements in any manner. This is particularly useful for evolution problems with moving discontinuities, avoiding the need for re-meshing as the discontinuities evolve. In order to achieve these requirements, the standard FE basis is enriched such that it can reproduce the interface discontinuities (either in the field or the gradient of the field) within an element by a local partition of unity. For computational efficiency the enrichments are local to a region near the discontinuities. Thus the discrete system of equations remains sparse. Figure 1 shows how the elements are enriched for a typical 2D discontinuity, where
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Fig. 1.
Local partition of unity enrichment for a typical finite element mesh with an interface, showing elements that are fully enriched, partially enriched and unenriched.
· the 3D interface discontinuity is implicitly represented by a moving level set model. While the shape and topology of the structure may undergo major changes, the level set function remains to be simple in its topology. Instead of performing complex geometrical operations, the movement of the interfaces is reformulated into a convection problem. Solving the related equation with a relevant speed function, enables to track changes in the shape and topology of the structure. The level set method can easily represent complex boundaries that can form holes, split into multiple pieces, or merge with others to form a single one. Although there are many choices of the level set function, the signed distance function is used for its stability in numerical computations [10], [11], [12], [13], [14];

· the level set function is discretized with standard finite elements and in all cases the same meshes and shape functions is used as for the dependent variable;
· the velocity extension computation (the distribution of velocity from the moving interface to the whole domain) is based on an original technique developed by present research team;
· in line with the concept of propagation of the level set surface, the optimisation make use of Genetic Algorithm.
In order to assess the performance of the proposed numerical approach based on the above mentioned methodology, a number of test case simulations have been carried out and t results are compared with published experimental and numerical data
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