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Abstract—A suitable correction of the Maxwell model

brings to an enlargement of the space of solutions, allow-

ing for the existence of solitons in vacuum. We review

the basic achievements of the theory and propose some ap-

proximation techniques based on explicit finite-difference

methods.
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I. Preliminary considerations

It is known that Maxwell equations in empty space do
not admit finite-energy solitary waves among their solu-
tions. One of the reasons to explain this fact is attributed
to the linearity of these equations, not allowing a due fo-
cussing of the signal on a constrained path. Such an im-
pediment has stimulated the research of alternative non-
linear models allowing for the existence of soliton-like so-
lutions.

A further step in the comprehension of electromagnetic
solitary waves has been given in [4], where, in the frame
of a new self-consistent theory, explicit solutions are car-
ried out. The main argument is that the classical equa-
tions of electromagnetism are not capable to follow the
evolution of finite-energy wave-fronts in the proper way
(i.e., the one described for instance by the Huygens prin-
ciple). The reason is that the two conditions divE = 0
and divB = 0 cannot hold at the same time on each point
of the same wave-front, unless the wave-front itself as-
sumes a very unnatural topology. Therefore, the above
conditions have been dropped, without this implying the
existence of electrical charges or magnetic monopoles.

Here we devote our attention to numerical simulations.
It is soon evident how the removal of relations divE = 0
and divB = 0 is important for the construction of numer-
ical algorithms in general, since most of the difficulties
in the approximation of Maxwell equations come exactly
from imposing these kind of constraints. This includes
the efforts made to build up approximation spaces sat-
isfying some divergence-free conditions (see [1], [3], [5])
or divergence corrections techniques (see for instance [6]).
Modifications of the Maxwell model have been proposed
at numerical level, in order to get stable schemes ([8], [7]),
to handle boundary conditions (see [2]), or for the treat-
ment of wave propagation in linear non-dispersive lossy
materials. These methods are mainly proposed to over-
come numerical troubles and are not intended to modify-

ing the Maxwell model itself, as we are doing here. For
simplicity, we use explicit finite-differences. The aim is to
validate the theory with a series of simple experiments.

II. The model equations

In [4] the theory of electromagnetism was entirely re-
viewed by replacing the Maxwell equations by a suitable
nonlinear set of equations. Compared to the classical ap-
proach, the new formulation provides a far more accurate
description of wave phenomena, and, not only improves
(with no contradictions) the existing models, but also al-
lows links and generalizations not possible with the stan-
dard Maxwell theory.

We assume to be in vacuum. No electric charges or
masses will be present. We are only concerned with the
evolution of pure electromagnetic waves. We claim that
the correct modelling of wave-fronts is given by the fol-
lowing set of equations:

∂E
∂t

= c2curlB − (divE)V (1)

∂B
∂t

= − curlE − (divB)V (2)

DV
Dt

= µ
(
E + V ×B

)
(3)

|V| = c (4)

The substantial derivative in (3) is given by: D
DtV =

∂
∂tV + (V · ∇)V. Moreover, c is the speed of light and
µ is a constant (not better specified) whose dimension is
charge/mass. In (4), | · | denotes the standard norm.

Here, E and B are the usual electric and magnetic fields,
while V is a new velocity field. The important fact is that,
even in vacuum, divE and divB are allowed to be different
from zero.
By taking the divergence of (1), we can write:

∂ρ

∂t
= − div(ρV) (5)

where ρ = divE. This is the continuity equation for a
nonsingular density distribution of charge travelling with
the wave. The nonlinear term, on the right-hand side of
(1), can be now interpreted as the source term due to the
Ampère law, for the density ρ, moving at the speed c in the
direction of V. Even if there are no real classical electric
charges, the density ρ lives inside the wave, evolving with
it.



CE 2
III. Evolution of free electromagnetic waves

We start by defining J = (E × B)/|E × B| to be the
(adimensional) normalized Poynting vector. In the special
case in which V = cJ, the set of equations becomes:

∂E
∂t

= c2curlB − c(divE)J (6)

∂B
∂t

= − curlE − c(divB)J (7)

E + c J×B = 0 (8)

The equation (4) is always satisfied. The equation (8) is
instead satisfied when E and B are orthogonal and |E| =
|cB|, which is a standard requirement.
Some important aspects of the theory are the following.

• If divE and divB are zero, we obviously reobtain the
Maxwell equations. Hence, the new set of equations
admits more solutions than the classical theory.

• Perfect spherical waves and travelling signal-packets
(solitons) of finite energy, are also solutions. It is
well-known that this is not true for the ordinary
Maxwell model.

• If divE and divB are relatively small (as it actually
happens in many practical circumstances), then (6)
and (7) are as accurate as the corresponding standard
Maxwell equations. Therefore, we expect the new
model to be consistent with the existing ones, for a
broad range of applications.

• It can be proven that the electromagnetic free waves
described by the new set of equations are per-
fectly compatible with the Huygens principle and the
eikonal equation.

• For divB = 0, the equation (6) follows from minimiz-
ing the standard Lagrangian of classical electromag-
netism, after imposing the constraint A = ΦJ to the
potentials.

IV. Constrained waves

Let us define G = D
DtV, so that G is an acceleration.

Basically, if V is the normalized vector field tangent to
the light rays, then the field G gives a measure to their
curvature.

The equation (3), even if there are no classical moving
charges, generalizes the Lorentz law. If G is zero, then one
is dealing with a free electromagnetic wave, and the cor-
responding rays are straight-lines (see previous section).
Actually, the equation (8), corresponding to G = 0, says
that the development of the wave is free from constraints,
that is, there are no external perturbations (forces) acting
on it.

When for some external reasons, (8) is not satisfied,
then D

DtV is different from zero, so that V changes direc-
tion (the rays are curving) and the electromagnetic wave-
fronts locally follow the evolution of the new normalized
Poynting vector J = V/c.

Thus, when G is different from zero, the wave is no
longer free, and it will be called constrained wave. This
may happen when the wave is subjected to external
electromagnetic fields, for instance during the interac-
tion with matter at atomic level, such as in reflection-
refraction, diffraction, scattering, etc.

Therefore, the equations (1), (2) and (3) provide the
coupling between the curvature of the rays and the mo-
tion of the wave-fronts. Note that, during the change of
trajectory of the rays, the polarization may also vary.

V. Approximation

For simplicity, we just discuss examples in the two-
dimensional space (x, z). For instance, for any y, we may
consider the following fields:

E = (cf(x)g(ct− z), 0, 0) B = (0, f(x)g(ct− z), 0) (9)

where f and g are arbitrary functions with compact sup-
port. These fields are solutions to (6), (7), (8). On the
contrary, they do not solve the Maxwell system unless f
is constant (plane wave). The continuity equation now
becomes:

∂ρ

∂t
= − c

∂ρ

∂z
(10)

corresponding to a shift, at the speed of light, along the
direction of the z-axis. We obtained in this way a perfect
electromagnetic soliton.

We used this exact solutions to check the validity of the
second-order explicit Lax-Wendroff method, implemented
for systems of equations. It can be shown that the algo-
rithm only acts on those vector components that were ini-
tially different from zero. Therefore, up to errors due to
the interpolation of the initial data, the discrete solution
also behaves as a perfect soliton.

Successively, experiments can be carried out concerning
solitons subjected to external perturbations. If, accord-
ing to (3), a constant gravitational field G0 is applied in
such a way that DV/Dt = G0, with |V| = c, then the
trajectory of the soliton is deflected. Such a behavior can
be actually observed numerically.

These preliminary tests are encouraging in view of more
sophisticated applications.
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