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Abstract—When dealing with the simulation of coupled
problems in the context of domain decomposition methods,
one often has to deal with curvilinear interfaces. Several
issues and results for handling these interfaces with non-
matching grids in a numerically stable manner are pre-
sented. Moreover, an application of nonconforming dis-
cretization techniques to an elasto-acoustic problem is con-
sidered.
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I. INTRODUCTION

The approximative solution of complex heterogeneous
problems is characterized by the necessity of being able to
combine different model equations, discretizations, spatial
and temporal scales, triangulations, and /or spatial dimen-
sions. Nonconforming discretization techniques cope with
this necessity by providing numerically robust discrete
problem formulations based on a geometrical decompo-
sition of the computational domain corresponding to the
different interacting fields. In this paper, we focus on the
handling of curvilinear interfaces and consider an appli-
cation to an elasto-acoustic problem. In particular, we
will summarize our results for the scalar case from [1] in
Section II, whereas in Section III, we will deal with vector
fields as discussed in [2], [3]. Building up on [4], we apply
nonconforming techniques to simulate the sound radiation
of an piezo-electric structure in Section IV.

II. THE ScALAR CASE

We consider the classical model problem —Awu = f in
Q with u = 0 on 0F2. The domain € is subdivided into
two non-overlapping subdomains Q™ and Q°, sharing the
possibly curved interface I' = 90Q™ N 9Q° with the unit
normal vector m. For simplicity, we assume that T" is
a closed curve. Transforming to the weak setting and
defining the Lagrange multiplier A\ € M = H~Y/2(T') by
A = —gradu - n, it is then possible to check that the pair
(u,\) € X x M, with X = {v = (vm,vs) € H(Q™) x
H'(Q®) respecting the Dirichlet conditions}, satisfies the
following saddle point problem:

a(u,v) +blv,\) = v E X,
) b((u,u; = MEM. (1)

Above, the (bi-)linear forms a(-,-) and f(-) are defined in
the obvious way, while the coupling bilinear form b(, -) is

f(v)
0

given by

b(”aﬂ):<[v]7l~t>l“a UEX) IU/EMa
with (-, -)p the duality product on H'/2(T") x H~Y/2(T).
For each subdomain €/, j = m,s, we have a triangula-
tion 7; of a domain €2}, such that 92}, is a piecewise linear
interpolation of 9€7. In this way, we obtain two piecewise
linear approximations of the curvilinear interface I' that
we denote by I'; and I'j'. The space of piecewise linear
functions on 7; respecting the Dirichlet boundary condi-
tions is denoted by X and we set X;, = Xy, 5 X X 5.
The discrete Lagrange multiplier space M, is associated
with the discrete (d—1)-dimensional interface I'j. While
the approximation of the (bi-)linear forms a(-,-) and f(-)
by ap(-,-) and fp(-) is straightforward, the discretization
of the coupling bilinear form b(-,-) is more involved. By
employing a suitable projection Ps : L2(I'%) — L*(T%),
we are able to define the discrete jump across I’} as

[v]n = vs — P, v € Xy,

and replace b(-,-) by

b (v, ) = ([v]n, W5, v € Xp, p € M.

In [1], we provide a rigorous mathematical analysis of
the resulting discrete saddle point formulation. Proceed-
ing in two steps, we first analyze an auxiliary problem
given in terms of blending elements, where the curved in-
terface is resolved in an exact manner. Then, the original
discrete problem is handled as a perturbation of the blend-
ing approach. The main result, which is developed for a
decomposition into many subdomains, is given as follows.

Proposition 1 For (u,A) sufficiently regular and
(up, An) given by the discrete form of (1), we have
[u = unlx, + A = SAnlar < Clu)h, (2)

where S is a stable mapping onto the curved interface T'.

III. THE VECTOR Fi1ELD CASE

We intend to solve (1) with spaces and (bi-)linear forms
given by the weak form of the linear elasticity prob-
lem of finding a displacement vector field w such that
—divo(u) = f in Q, supplemented by boundary condi-
tions, by the Saint-Venant Kirchhoff law o = A, (tre)Id +
2ur, €, with the Lamé constants A, ur,, and by the lin-
earized strain tensor £(u) = 1 (gradu + [gradu|"). Here,
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the Lagrange multiplier A corresponds to the surface trac-
tions on I', namely, A = —o(u)n. The spaces X and M
consist of vector fields with component functions being in
the corresponding spaces for the scalar case.

The a priori result (2) transfers to the linear elasticity
setting by standard arguments. Nevertheless, the use of
dual Lagrange multipliers may exhibit an undesired be-
havior in form of unphysical oscillations, if the Lagrange
multiplier space is chosen with respect to the coarse grid.
Figure 1 illustrates this misbehavior by means of a simple
example. The domain is a spherical shell experiencing a

Fig. 1. Distorted domains: standard Lagrange multipliers (left),
unmodified dual (middle), modified dual (right).

deformation which is constant in normal direction to the
inner and outer boundary. While the use of standard La-
grange multipliers results in a visually correct result, the
use of dual multipliers yields a rather poor approxima-
tion of the exact solution. However, often it is strongly
desirable to employ the advantages of the dual approach.

In [2], [3], we present two alternative modifications.
Both have in common that only the coupling of the La-
grange multipliers to the master side is changed, namely,
(Psvm, p)rs . Therefore, all the advantages of the dual ap-
proach are preserved. The coupling bilinear form by, (-, -)
is replaced by a modification b¥°4(-, ). The modifications
incorporate a splitting of vector fields on the interface into
normal and tangential components admitting a correct
transfer of these quantities across the two non-matching
grids. In the first alternative, we replace the L2-scalar
product (-,-)rs by a discrete one. This can also be in-
terpreted by replacing g on the master side by pu + Ap,
where Ap is the sum of Dirac distributions. Due to this
non-smooth modification, we are not able to prove the
optimality of the resulting modified approach. However,
numerical evidence shows that the undesired oscillations
vanish, as illustrated in the right picture of Fig. 1. For
the second alternative, the modification Ap is chosen to
be momentum-free such that the modified approach still
preserves linear momentum. Here, we are able to prove
optimal a priori estimates which can be confirmed by nu-
merical tests. In favor of the first modification is the fact
that it is easier to implement. Both approaches reduce to
the original one in the case of a planar interface.

IV. APPLICATION

We present an application of nonconforming domain
decomposition techniques to an elasto-acoustic problem
setting. For the structure (g, we choose a piezo-electric
material, where mechanical quantities interact with an

electric field, modeled by
psus — dive = f,
divD =g,
o(us, ) = Ce(us) + B grad ¢,
D(ug, ) = Be(ug) — € grad ¢.

where ug, o, and € denote the mechanical displacement,
stress, and strain, respectively, and ¢, D, E indicate the
electric potential, the flux density, and the electric field,
respectively. The coupling between the electrical and the
mechanical part is characterized by the elastic stiffness
tensor C, the piezo-electric tensor B, and the dielectric
permittivity tensor £.

Inside the acoustic fluid 24, we consider the wave equa-
tion for the acoustic velocity potential 1,

¢ 2h— Ay =0.

The coupling between the acoustic potential and the me-
chanical displacement field is given by the continuity of
the normal velocities and of the surface tractions across
the interface I', namely,

on = —pany.

In the left picture of Fig. 2, a part of the finite element

Fig. 2. Left: cylindrical plates attached to the fluid domain, right:
isosurfaces of the acoustic potential, deformed plates.

grids used for the computation is shown. The noncon-
forming approach admits to use the grid desired for each
subdomain regardless of the other subdomains. The right
picture shows the result of a preliminary calculation where
no piezo-electric effect has been taken into account.
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