Mathematical and Computational Methods 1

Efficient Execution of Loosely Coupled Tasks

in Grid platforms
Felicia B. Ionescu, Stefan A. Diaconescu and Alexandru C. Gherega

University Politehnica Bucharest

Splaiul Independentei Nr. 313, Postal Code: 060042, Romania

fionescu@tech.pub.ro

Abstract— Grid technologies offer powerful computing resources for parallel and distributed applications, but the highly heterogeneous and dynamic nature of the Grids need adaptable, scalable and extensible scheduling systems. In this paper we describe a dynamic, centralized scheduling mechanism based on Master-Worker paradigm for efficient execution of a set of loosely coupled tasks in a Grid environment. This mechanism has high programmability features, adaptability and reliability. Experiments are presented that demonstrate the effectiveness of our approach.

Keywords— parallel and distributed systems, grid computing, service-oriented architecture, dynamic scheduling, master-worker model

I. Introduction
The grid computing paradigm aggregates the view on existing hardware and software resources, coordinating resource sharing and problem solving in dynamic, multi-institutional virtual organizations Grid platforms are now developed in a service-oriented architecture, defined as Open Grid Service Architecture (OGSA) [1], which standardizes all the services one finds in a grid application There are two implementation specifications for OGSA: Open Grid Services Infrastructure (OGSI), released in 2003 and Web Services Resource Framework (WSRF) introduced in 2004 by a team from IBM and the Globus Alliance. WSRF is an attempt to re-factor many of the concepts in OGSI to be more consistent with today's Web Services, allowing the manipulation of state, with no modifications to Web Services tooling.

Currently, the Globus project (www.globus.org) is the highly favorite grid toolkit, having been adopted by IBM, HP, etc. Another interesting grid toolset is WSRF.NET, which is an open-source implementation of the WSRF specifications developed at Virginia University (www.cs.virginia.edu) for Windows systems under .NET platform. It was developed in order to evaluate the core concepts of WSRF and, also, to provide interconnection with Linux/Unix WSRF grids supported by Globus Toolkit V4 (GT4). WSRF.NET heavily utilizes the Microsoft applications and tooling such as IIS, ASP.NET (Microsoft's support for Web Services/SOAP that is integrated with IIS), and Visual Studio .NET (VS.NET).

In grid environments, different execution management tools control the initiation, monitoring, management, scheduling, and/or coordination of remote computations. Other functions can be needed, such as Resource discovery and selection mechanism which performs persistent resource state and capacity checking, by discovering and matching resources, Capability check mechanism which performs resource selection based on dynamic information, Resource allocation with advance reservation and co-allocation and finally Resource requester and provider interaction for negotiation and notifications, but currently no widely deployed single Grid scheduling mechanism supports all these functions.

In this work, we developed a dynamic, centralized scheduling mechanism based on the Master-Worker model, for efficient execution of loosely-coupled tasks in a WSRF.NET grid environment, as an alternative to scheduling strategy implemented by Scheduler Service [2], which has the aim to facilitate interoperability with Linux/Unix grid applications.

II. Master-Worker Model for Loosely Coupled Tasks
The Master-Worker (MW) model (also known as Master-Slave model) has been widely used for developing parallel applications, including grids [3]. In the MW model there are two distinct types of processes: master and workers. The master process assigns the tasks to the workers taking into account the dependencies between them. The workers typically perform most of computational work by just executing those tasks. The MW model has proved to be efficient in developing applications with different degrees of granularity of parallelism and is particularly useful when the dependencies between tasks are low.

The aim of our work is to demonstrate the viability of the MW paradigm for efficient execution of a set of loosely coupled tasks in a Grid environment. To this end, we have written a Grid implementation prototype of the model using the WSRF.NET toolset and have deployed it on the local network platform consisting of 18 PC nodes (Pentium IV 2GHz, 80GB HDD, 512 MB RAM) connected with Gigabit Ethernet switch. Each node run .NET framework under Windows XP operation system, offering the grid fabric needed for experiments.

For this experiment, we used a generic parallel application in the form of an acyclic task dependence graph (TDG), represented by the couple G = (V, E), where V is the set of vertices in the graph, corresponding to the tasks, and E is the set of directed edges, indicating the precedence relations between tasks). The communications on the network involve only short messeges exchanged between master and workers, containing parameters and returned values of the methods invoked by the master process on the workers, so that, loosely coupled tasks and bandwidth unlimited communications can be assumed.

The graphs used for experiments were generated off-line and stored in files available on the disk, each task containing its own size (computation cost), a list of all precedent tasks (parent tasks) and a list of all dependent tasks (child tasks).

 The master and worker components are developed as WSRF Grid Services (Master Service and Worker Service), deployed in different nodes of the grid. The Master Service receives an execution command (containing a TDG) from a client application and distributes the tasks to all available Worker Services, hosted in Worker Nodes of the grid.

The worker Grid service publishes an interface with only one operation (doTask()) that the master service calls in order to dispatch a task to a worker. The master Grid Service publishes an interface with different operations, such that doGraph() function that the client calls in order to start the distributed execution of the program represented as a TDG. The client is just a simple C# application with a graphical interface, which collects different parameters of the execution: the name of the file that contains the TDG to be processed, the task size control value and the number of workers to be used. These values are passed as parameters to the master service operation (doGraph()).

The master maintains a list of all available (idle) workers (AWL) and processes the received TDG, creating a list of ready tasks (RTL) and a list of waiting tasks (WTL). A task is ready to be executed if it has no parents or all its parents were already executed. The distributed execution of a TDG is accomplished as a loop in the main thread of the master service, which runs until all tasks are processed. In this loop, the available workers list (AWL) is checked and, if the list is non-empty, an available worker is selected; else, the main thread is waiting until a worker become available.

If an available worker was selected, the main thread checks the list of ready tasks (RTL) and, if this list is non-empty, a ready task is selected. In this point of the execution, the main thread creates an auxiliary thread and loops back to available workers list check.

The auxiliary thread calls the doWork() function of the selected worker service, with the parameters of the selected task (task size) and it run until the function called on the worker service returns. When this function returns, the auxiliary thread updates the list of available workers, the list of ready tasks and the list of waiting tasks and exits.

III. Experimental Results
This section contains several experiments, showing the impact of varying the characteristics of the task dependence graph on the efficiency of its distributed execution using Master-Worker model. The experiments are not meant to be comprehensive, but only to give the reader an image of aspects that application programmers must consider when building efficient master-worker applications for grid environments. The computing environment (a WSRF.NET grid prototype) was used in dedicated mode for these experiments.

For each TDG, several executions, with different task weight and different number of workers (nodes) were accomplished. The sequential execution time (TS) of a TDG with a given size of the tasks was measured executing all tasks only in the master service. The parallel execution time (TP) of a TDG with a given size of the tasks, on a given number of nodes (p) was measured in the master service with a normal operation of master-worker mechanism, described in the previous section.

The results obtained for a TDG with 64 tasks on 1, 2, 4, 8, 16 grid workers (nodes), for different tasks size are presented in Fig. 1.
These results show that the efficiency (computed with the well-known expression: E = TS / (p*TP)) decreases when the number of nodes (workers) increases and when the task size decreases. This behavior is mainly caused by the centralized control of scheduling (executed in master), which represents a fraction of unparallelizable computation that limits the speedup and efficiency of the parallel execution.

[image: image1.wmf]0,00

0,20

0,40

0,60

0,80

1,00

1

2

4

8

16

Nodes

Efficiency

Size =160

Size = 80

Size = 40

Size = 20

Size = 10

Fig. 1. Efficiency for Master-Worker execution of a TDG

The master-worker model presents a poor scalability, but offers a lot of interesting features in a grid environment: programmability (users should easily be able to take an existing application and integrate it with the grid platform), adaptability (the system should transparently adapt to the dynamic and heterogeneous execution environment) and reliability (the system should perform the correct computations in the presence of worker processors failures).

IV. References
[1] I. Foster, C. Kesselman and S Tuecke, “The Anatomy of the Grid: Enabling Scalable Virtual Organizations”, International Journal of Supercomuting Applications and High Performance Computing, vol 15, pp.200-222, March 2001.
[2] G. Wasson and M. Humphrey, “Exploiting WSRF and WSRF.NET for Remote Job Execution in Grid Environments”. International Parallel and Distributed Processing Symposium (IPDPS 2005), Denver CO, Apr. 2005.

[3] Jeff Linderoth, “MW: Master-Worker Middleware for grids”, Eleventh SIAM Conference on Parallel Processing for Scientific Computing (PP04), San Francisco, Febr. 2004.

_1204373874.xls
Chart1

		1		0.8		0.75		0.62		0.5

		2		0.7		0.55		0.45		0.315

		4		0.575		0.405		0.3		0.16

		8		0.4875		0.2425		0.1625		0.08125

		16		0.4		0.15625		0.09375		0.04125

Size =160

Size = 80

Size = 40

Size = 20

Size = 10

Nodes

Efficiency

0.9

0.85

0.8

0.7875

0.775

Sheet1

		

				160				10		20		40		80				10		20		40		80		160

				0.9		1		0.5		0.62		0.75		0.8				0.50		0.62		0.75		0.80		0.90

				1.7		2		0.63		0.9		1.1		1.4				0.32		0.45		0.55		0.70		0.85

				3.2		4		0.64		1.2		1.62		2.3				0.16		0.30		0.41		0.58		0.80

				6.3		8		0.65		1.3		1.94		3.9				0.08		0.16		0.24		0.49		0.79

				12.4		16		0.66		1.5		2.5		6.4				0.04		0.09		0.16		0.40		0.78

Sheet1

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

Grain size =160

Grain size = 80

Grain size = 40

Grain size = 20

Grain size = 10

Nodes

Speedup

Speedup for different medium task size of the same TDG

0

0

0

0

0

Sheet2

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

0

0

0

0

0

Sheet3

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

Size =160

Size = 80

Size = 40

Size = 20

Size = 10

Nodes

Efficiency

0

0

0

0

0

		

		

