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Abstract—In nonlinear magnetic field computations,

one is not only faced with large jumps of coefficients across

material interfaces but often also with high variation of

coefficients inside homogeneous material. We present an

efficient solver for nonlinear potential problems, the core

part of which is a special FETI preconditioner for the case

of high variation but moderate anisotropy in the coeffi-

cients. In electromagnetics, the coupling FEM and BEM

can be very useful, for instance in the cases of unbounded

domains and small air gaps.
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I. Introduction

Domain decomoposition (DD) methods like the rather
popular Finite Element Tearing and Interconnecting
(FETI) methods [1], dual-primal FETI (FETI-DP) meth-
ods [2] and Balanced Domain Decomposition by Con-
straints (BDDC) techniques [3] offer preconditioners
that result in a condition number proportional to (1 +
log(H/h))2, where h is the average mesh size and H the
maximal diameter of the subdomains. Moreover, the pre-
conditioners are robust with respect to jumps in the coef-
ficients across subdomain interfaces, cf. [4].

Recently, Langer and Steinbach have introduced the
Boundary Element Tearing and Interconnecting methods
as a boundary element counterpart of the FETI method
[5] and the coupled FETI/BETI methods [6].

Coupling finite and boundary elements, one can benefit
from the advantages of both techniques, for instance in
electromagnetics, the boundary element method (BEM)
allows a rather comfortable treatment of unbounded do-
mains and air gaps, whereas source terms and nonlinear-
ities can be modelled with the finite elements.

Applying Newton’s method, the spectrum of the Jacobi
matrices in the nonlinear subdomains may show high vari-
ation, especially due to corner singularities in the solution.
A special FETI preconditioner is proposed to overcome
these problems.

II. Coupled FETI/BETI Methods

Let Ω ⊂ R
d (where d = 2, 3) be a bounded Lipschitz

domain with the boundary Γ and the outward unit normal
vector n. We further assume a regular non-overlapping
decomposition Ω =

⋃
i Ωi with the local boundaries Γi =

∂Ωi and the interfaces Γij = Ωi ∩ Ωj . The outward unit
normal vector on Γi is denoted by ni. We consider the
following homogeneous Poisson problem with piecewise
constant coefficients: Find u such that

− div(αi∇u) = f in Ωi ,

u = 0 on Γ , αi
∂u
∂ni

+ αj
∂u
∂nj

= 0 on Γij ,
(1)

with αi = const. The solution ui of a local sub-problem

−div(αi∇ui) = 0 in Ωi, u = g on Γi , (2)

defines the Steklov-Poincaré operator

Sig := αi
∂ui

∂ni
, (3)

mapping the Dirichlet trace g to the corresponding Neu-
mann trace. This operator can be approximated by the
FEM using the Schur complement SFEM

i,h of the FEM stiff-
ness matrix eliminating inner unknowns, or using a sym-
metric approximation SBEM

i,h by the BEM, cf. [5], [6].
Introducing separate variables ui on the local discrete

spaces Vh(Γi) one can re-enforce the continuity over the
interaces Γij by constraints

∑
i Biui = 0, where Bi con-

tains only entries 1, −1, 0. The discrete dual FETI/BETI
formulation of problem (1) is of the form: Find the La-
grange parameter λ such that P T Fλ = d, where P is a
special projection operator addressing the kernels of the
sub-problems and the Dirichlet boundary condition, and
F denotes the FETI/BETI operator defined by

F =
∑

i
Bi

[
S

FEM/BEM
i,h

]†
B>

i . (4)

The preconditioner

M−1
S,α = (BC−1

α B>)−1
[∑

i BiC
−1
α,iS

FEM/BEM

i,h C−1
α,iB

>
i

]

m · (BC−1
α B>)−1

(5)

fulfills the condition estimate

κ(PM−1
S,αP T P T FP ) ≤ C(1 + log(H/h))2 , (6)

independent of the jumps in the coefficients αi. Essen-
tial for this feature is the scaling matrix Cα, involving
weighted mean values of αi on corner points, edges and
faces between the subdomains, cf. [4], [6].

Now, on some subdomains (which are discretized by
the FEM), we consider instead of a constant coefficient
αi a varying matrix coefficient Ai(x) which we assume
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to be constant on the finite elements T ∈ Ti,h. In order
to determine the amount of variance, we introduce the
spectral variance measure

mSV(Ai) :=
supx∈Ωi

αi(x)

infx∈Ωi
αi(x) , (7)

where αi(x) and αi(x) denote the maximal and minimal
local eigenvalues of Ai(x), respectively. The application
of a preconditioner with Steklov-Poincaré operators corre-
sponding to constant coefficients leads to a condition num-
ber being proportional to maxi mSV(Ai), which is not at
all acceptable in magnetostatic applications. We propose

a new preconditioner M̂−1
S,A based on a varying scalar co-

efficient α̂i(x) together with a suitable scaling matrix Ĉα.
If the local anisotropy

manis(Ai) := sup
x∈Ωi

αi(x)
αi(x) , (8)

is moderate, our new preconditioner works fine, see [7].

III. Nonlinear Problems

We now consider the following nonlinear magnetostatic
model problem: Find u such that

−div[νi(|∇u|)∇u] = f in Ωi ,

u = 0 on Γ ,

νi(|∇u|) ∂u
∂ni

+ νj(|∇u|) ∂u
∂nj

= 0 on Γij .

(9)

Assuming that the reluctivity curves νi : [0,∞) → (0,∞)
are strongly monotonic and C2, (9) is uniquely solvable in
the weak sense and the corresponding Newton iteration
converges locally at quadratic rate, cf. [8]. We mention,
that such material curves can be generated also from noisy
measurements in a robust way by a special interproxima-
tion technique [9]. In the linearized problems a varying

matrix coefficient ζi(∇u
(k)
h (x)) appears. In our numeri-

cal experiments it turns out that typically the anisotropy

measure manis(ζi(∇u
(k)
h )) is small, whereas the spectral

variance measure mSV(ζi(∇u
(k)
h )) is high. Hence, with

our new preconditioner M̂−1
S,A such linearized Newton-

problems can be solved satisfactorily. In order to get a
good initial guess, it is convenient to set up a hierarchy of
nested grids and use coarse grid solutions as initial guesses
on finer levels. In Fig. 1 we show a computation on a 2D
magnetic valve model problem, cf. [7].

IV. Unbounded Domains

Instead of the Dirichlet boundary condition in (9), we
consider the exterior problem with a suitable radiation
condition, i. e.

−(1/µ0)∆u = 0 in Ωc ,

|u(x)| = O(|x|−1) for |x| → ∞ ,
(10)

where Ωc = R
d\Ω̄ denotes the exterior space and µ0 is the

permeability of vacuum. In this case, the Dirichlet to Neu-
mann map on Ωc can also be characterized by a Steklov

Poincaré operator approximation SBEM
c,h . The proof of the

condition estimate (6) is based on spectral equivalences

of S
FEM/BEM
i,h to the H1/2(Γi)-semi-norm. Since SBEM

c,h is
equivalent to this semi-norm as well, at least on the corre-
sponding sub-space, an extension of the result to the case
of (10) by similar techniques is possible.

We observe, that in Newton’s iteration, a coarse solu-
tion of a homogeneous Dirichlet problem serves as a good
initial guess for the extended problem on finer levels.

Fig. 1. Reluctivity ν in the ferromagnetic parts of a magnetic valve,
logarithmic scale.
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