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Abstract— The paper presents an electro-thermal numerical model which allows optimal dimensioning of current leads, for high currents, with variables cross-section, by neglecting the skin effect. The numerical model obtained by coupling the electrokinetic field problem with the thermal field problem allows calculation of constriction resistance (which generates an additional source term in the thermal equation model) of the current lead as well as other electric and thermal quantities. For an imposed value-limit of the temperature, one can determine the optimal geometry of the current lead.
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I. Introduction
Optimization of massive current leads with variable cross-section (electrical contacts, dismountable contacts, etc.), for high currents (1000-6000 A), is possible by solving a coupled of thermal and electrical field problem. In the case of such geometric configurations, the current density 
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 has not a uniform distribution. To solve numerically the equation of thermal conduction we need to know the thermal source 
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 in all points of the discretization grid of the analysis domain (
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 being the electric field intensity). The electrical quantities can be obtained by solving the Laplace equation for electric potential. The solution of the equation depends on temperature through electric conductivity. Consequently a problem of coupled thermal and electrical field is necessary to obtain correct distributions of temperature and electrical quantities in the analysis domain.

The numerical model we present allows the calculation of constriction resistance and thermal quantities (thermal gradient, vector field of thermal flow density, dissipated thermal flow  at lead surface, losses due to Joule effect, etc.).
II. Mathematical Model
The mathematical model used to obtain the numerical model has two components, coupled through electric conductivity, depending on temperature,
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· Electrical (electrokinetic) model

· Thermal model
A. Electrical Model
The electrokinetic field is considered a 2D model and is described by the electric potential V(x,y) which satisfies the Laplace equation



[image: image7.wmf]0

)

(

)

(

=

÷

÷

ø

ö

ç

ç

è

æ

¶

¶

¶

¶

+

÷

ø

ö

ç

è

æ

¶

¶

¶

¶

y

V

T

y

x

V

T

x

s

s

.
(1)
where electric conductivity 
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, and electric resistivity depends on  temperature as 



[image: image9.wmf](

)

)

20

(

1

)

(

20

-

+

=

T

T

R

a

r

r

.
(2)
Knowing the electric potential, we can obtain the intensity of electric field as 
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 and current density as 
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 (law of electric conduction). The specific losses (per volume unit) that is the source term in thermal conduction equation is given by relation 
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B. Thermal Model

The temperature distribution in the analysis domain is given by the stationary thermal conduction equation
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where 
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 is the thermal conductivity which, in the case of the temperature range of current leads can be considered as constant, not depending on temperature.

III. Analysis Domain And Boundary Conditions
Because of simetry, the analysis domain and boundary conditions for the electric model are these of Figure 1.
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	Fig. 1. Analysis domain and boundary conditions for the  electrical model


Generally we know the current passing the leads and the voltage drop  
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 is a consequence. In this model we impose a voltage drop 
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 and calculate the current in the input cross-section of the current lead. To obtain a value of the current we modify the voltage drop applied to the current lead until we get the desired value.

The boundary conditions for the thermal model are shown in Fig. 2.
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	Fig. 2. Analysis domain and boundary conditions for the thermal model


IV. Numerical Algorithm
The numerical model is obtained by discretization of the partial differential equations (1) and (4) using the finite volumes method [1]. The coupled model used is of alternant type [4] (see Fig. 3). 
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	Fig. 3. Simplified diagram of numerical algorithm


V. Examples Of Numerical Results
The figures 4, 5, 6 and 7 present the distribution of potential (equilines of potential), the current density (equilines of current density) the thermal field (isothermal lines) and the gradient of temperature for a current of 965.22 A corresponding to a voltage of  0.02 V.
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	Fig. 4. Distribution of potential (equipotential lines)


For the geometry considered we have the following values of the total resistence 
[image: image21.wmf]t

R

 and of constriction resistence  
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	Fig. 5. Distribution of current density
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	Fig. 6. Distribution of themal field (isothermal lines)
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	Fig. 7. Distribution of temperature gradient
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 is the ohmic resistance. The constriction resistence  
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 represents 39.86 % of the total resistence.

The model will be used for the optimization of the dismountable electrical contacts for high currents.

VI. Conclusions
The mathematical model allows optimization of the current leads with variable cross-section (electrical contacts) by obtaining a geometry of the imposed thermal stress and minimal losses due to Joule effect. The model was validated numerically using the QuickField (for electrical model) and Mirage software (for the thermal model) for a constant electric conductivity in equation (1) and a constant source in equation (4). The values of constriction resistence were validated using a simplified model of [2].
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