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Modeling and Control Issues for Non-Minimum Phase Distributed Parameters Electro-Mechanical Systems 
Dan Necsulescu
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Abstract— Mixed electromechanical systems simulation and control require to use an integrated approach that is suitable to the multisystem character of these systems. Lagrangian and Hamiltonian dynamics permit simultaneous representation of subsystems of different physical natures. In this paper, Lagrangian and Hamiltonian dynamics are used for modeling electro-mechanical systems, with focus on power transfer between the conservative and non-conservative part of non-minimum phase systems. An illustrative example clarify the applicability of the proposes approach.
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I. Introduction
Lagrangian formulation of electromechanical systems dynamics has been already proposed by Mann [1], and Hamiltonian formulation of mechanical systems dynamics has been investigated by Astolfi and Menini [2], Slotine and Di Benedetto [3], etc. In this paper the investigation is carried out for non-minimum phase electro-mechanical systems, formally defined in Slotine and Li [4]. For the illustration of the approach, a DC motor with a flexible shaft is modeled taking into account the non-minimum phase character of the system.
II. General Formulation of the Dynamics
Lagrange equations for an n degrees of freedom system are given by:
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where, r=1,2,…,n, n is the number of degrees of freedom of the system, K is kinetic energy, U is potential energy, qr is the generalized coordinate  and Fr  is the generalized force corresponding to the work done by the  is the generalized coordinate qr. The electrical generalized force is voltage. 
In general, the derivation of Hamiltonian function H requires prior derivation of the Lagrangian L=K-U, such that, 
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where the generalized momentum is given in time derivative  form by  
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 In this paper, the investigation is for a very common type of systems, natural systems. In this case there are no moving coordinates or constraints, such that the time t does not appear explicitly in coordinate transformation equations and the kinetic energy is given by
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For the natural system, the Hamiltonian is equivalent to the total energy of the system  
H=K+U                                                                 (5)
This property permits direct calculation of the Hamiltonian, without prior calculation of the Lagrangian L. Time derivative of the Hamiltonian, 
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corresponds, in this case, to the power transfer, to (from) the conservative part of the system.  H and dH/dt can be used as energy-based Lyapunov functions for stability analysis [5,6]. For an electromechanical system, Lagrange equations for the mechanical subsystem with nm degrees of freedom and electrical subsystem with ne degrees of freedom, (nm +ne =n), are given by 
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and
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where p=1,2,.., nm, s=1,2,…, ne , 
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 are the electric and mechanical kinetic energies, respectively, 
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 are the electric and mechanical potential energies, respectively, 
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 is the nm vector of mechanical generalized forces 
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 (dissipative force and applied forces), 
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 is the ne vector of electrical generalized voltages 
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 (dissipative voltage drop and applied voltages), 
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  is the nm vector of generalized displacement variables and 
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is the ne vector of charges in capacitive components.

III. Non-minimum Phase Systems
Non-minimum phase nonlinear systems pose significant difficulties to the controller design, Slotine and Li, [4]. Feedback linearization cannot be directly applied because the corresponding positive zero, in the first order linearization, is placed as a positive pole and destabilizes further the system. A typical solution is to design the controller for an approximation of the system in which non-minimum phase part is removed by output redefinition. In such a case it is important to quantify the effect of this approximation in terms of power transfer and to analyze the stability of both approximate and original system. For this purpose, power transfer, quantified by the time derivative of the Hamiltonian, has to be derived for both the approximate system,
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permits to identify the effect of the approximation on the power transfer and stability of the system.
IV. Example

This approach is illustrated by a non-minimum phase servomotor with a flexible shaft. Distributed parameters models for flexible structures use often partial differential equations and are solved using finite elements. This distributed parameters system can be approximated by various lamped parameters models.

Two lumped parameters models of the flexible shaft (with moment of inertia J and torsional stiffness coefficient k) can be used to illustrate different levels of lumped parameters approximations of a flexible structure. Flexible shaft is represented in this paper by a single finite element model, with  the angular displacements θ1 and θ2 of the two ends of the shaft and (1 and(2 , the corresponding angular velocities. In the case that the motor end of the shaft is subject to the torque (TBBB 1BBB= τBBB 1BBB) applied by the actuator  and the opposite end of the shaft is free (TBBB 2BBB=0),  the finite element model gives the following transfer function 
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This confirms that this single finite element model provides a non-minimum phase representation of the flexible shaft. 
For this natural system, Hamiltonian functions H and H(a) can be obtained from the total energy [5].
H= Km+ Um = (J/6)(12/2+ (J/6)((1+(2)2/2+(J/6)(22/2+k(θ1 - θ2 ) 2/2              (9)   
H(a=K(a)m+U(a)m=(J/2)(12/2+(J/2)(22/2+k(θ1-θ2) 2/2

Power transfer equations are given by
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and
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where i is the current in the rotor of the DC motor.

The equations for H and H(a)  quantify the power transfer from the conservative part of the system, that stores energy in J and k, and the non-conservative part of the system, in this case 
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, the power input from the motor as a result of the rotor current i. Obviously, if the current i changes direction, this power transfer also changes sign and can extract energy from the conservative part of the system [6]. 

V. Conclusions

The main conclusion of the paper is that the Lagrangian and Hamiltonian formulations of the dynamics of natural systems permit to quantify the transfer of power  from (to) the conservative part of the system (to) from the non-conservative part. This is particularly of interest in the case of non-minimum phase elecro-mechanical systems due to the possibility of integral modeling of mixed systems. The example of an electric servomotor equipped with a flexible shaft illustrates the features of the proposed approach for designing the controller and redesigning the system to achieve efficient power dissipation. 

VI. References
[1] Mann, H., Modular Approach to Lagrange’s Formalism for Mechatronic Systems,  Proc. Of the 3rd International Heinz Nixdorf Symp., Wallaschek J., Luckel J. amd Littmann W (editors) , Paderborn, 1999, pp. 67-80. 

[2] Astolfi A. and Menini L., Noninteracting Control with Stability for Hamiltonian Systems, IEEE Trans. Automatic Control, vol. 45, Aug. 2000, pp. 1471-1482.
[3] Slotine, J-J and Di Benedetto, M., Hamiltonian Adaptive Control of Spacecraft,   IEEE Trans. Automatic Control, vol. 35, July. 1990, pp. 848-852.

[4] Slotine, J E. and Li, W. Applied Nonlinear Control, Prentice-Hall, Englewood Cliffs, N.J., 1991.
[5] Maschke B., Ortega R. and van der Schaft, A., Energy-Based Lyapunov Functions for Forced Hamiltonian Systems with Dissipation, IEEE Trans. Automatic Control, vol. 45, Aug. 2000, pp. 1498-1302.

[6] Necsulescu, D. S., J. de Carufel and C. Canudas de Wit, Investigation of the Efficiency of Acceleration Feedback in Servomechanism with Friction, Dynamics and Control, 7, 1997, pp. 377-397

� EMBED Equation.3  ���








[image: image22.wmf])

8

(

k)]

/12

[Js

Js

/6

Js

-

k

(s)

τ

(s)

θ

2

2

2

1

2

+

=

_1198488380.unknown

_1198598180.unknown

_1198767196.unknown

_1203342365.unknown

_1203353127.unknown

_1203352579.unknown

_1203342351.unknown

_1198598190.unknown

_1198490038.unknown

_1198492603.unknown

_1198587816.unknown

_1198588097.unknown

_1198492583.unknown

_1198488686.unknown

_1198480674.unknown

_1198481285.unknown

_1198482506.unknown

_1198481231.unknown

_1198479897.unknown

_1198480189.unknown

_1198480214.unknown

_1198479856.unknown

