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Abstract—Transient analysis is a very important circuit
simulation technique. The circuit model, which is a system
of differential-algebraic equations, is solved for a given ini-
tial condition using numerical time integration techniques.
Multirate methods are very efficient if the activity of the
circuit model is not uniform. Automatic partitioning is
needed to spllit the model in two parts such that the max-
imal speed-up factor is achieved.
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I. INTRODUCTION

Analogue electrical circuits are usually modelled by
differential-algebraic equations of the following type:

< la(t, )] +i(t,%) = 0, 1)
where x € R? represents the state of the circuit. A com-
mon analysis is the transient analysis, which computes the
solution x(t) of this non-linear DAE along the time inter-
val [0, T] for a given initial state. Often, parts of electrical
circuits have multirate behaviour, which means that some
variables are slowly varying, compared to other variables.
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Fig. 1. Circuit diagram of test example.

Figure 1 shows an example, which is a scalable circuit
with 5 x 5 inverters. The subcircuits are connected with
linear filters which were chosen such that 3 subcircuits are
active and nearly decoupled from the other subcircuits.
Let {hi,...,hq} be the required time-steps per unknown

and hmax = max{hy,..., hq}. Figure 2 shows the relative
time-steps 5 r’rlla — per unknown. Clearly the most variables
are not active, so it is very attractive to partition the

model and use multirate methods [1], [2].
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Fig. 2. Relative time-steps per unknown for test example.

II. PARTITION OF THE SYSTEM

Here we will limit ourselves to partition the circuit into
two complementary parts. Multirate methods integrate
both parts with different time-steps H and h. For circuits
with multirate behaviour, like the previous example, the
multirate factor ¢ = % can be a large number.

For a multirate method it is necessary to partition
the variables and equations into an active (A) and a
latent (L) part. This can be done by the user or au-
tomatically. Let By € R¥4*? and By € R >4 with
da + di, = d be the permutation mappings, which satisfy
B,BY =1,B,BY =1,B,Bf = 0,B,BY = O. Then
the variables and functions can be split in active (A) and
latent (L) parts:

x = Bhx,+BTx;,
q(t7 X) = BﬁqA (ta BAX7 BLX) + ngL (ta BAX; BLX)7
it,x) = BRjs(t,Bax,Brx)+ BLj(t, Bax, Brx).

(2)
Now equation (1) is equivalent to the following partitioned
system:

d .
a [qA(t7 XAJXL)] +-]A(t7XA7XL) = 07 (3)
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d .
7 [az (t,xa,xL)] +ir(t,xa,x) = 0. (4)

For DAEs the partition should be properly chosen such
that the parts (3) and (4) are also solvable. Furthermore
it is a nice property if also the stability and index are
preserved.

III. OPTIMIZATION OF SPEED-UP FACTOR

Partitioning is an important attribute for multirate
methods. Together with the time-steps it can be used
to control the local discretization error. Consider a mul-
tirate method using a fixed partition and fixed stepsizes
H, h. These steps are chosen such that the results are as
accurate as a singlerate method using fixed step hs. Al-
though h can be smaller than h,, we assume that hi ~1
is nearly independent of the partition. Then it can be
derived that the speed-up factor satisfies approximately

1

S=1—F, (5)
L+E

where E ~ (%)% is the workload ratio. For an optimal
partition this speed-up factor S will achieve its maximum.

Because h mainly depends on the error of the most
active element, it is nearly independent of the partition.
Thus the multirate factor ¢ = % only can be increased
by maximizing H. We know [2]| that the step H satis-
fies: H = min{H¢, Hr}, where H¢ is the step required
by the discretization error for the slow part and Hr is
the step required by the interpolation error for the ac-
tive part. So, increasing ¢ can only be done by increasing
Hg or Hr. The step Heo can only be increased if the
fastest latent variable which is responsible for H¢ is con-
verted to the active part. The step Hy can be increased
in two manners. First, the responsible active variable can
be converted to the latent part, which clearly increases
Hj. Second, some latent interpolated variables which are
coupled to our dominant active variable can be converted
to the active part, which also increases Hy. The work-
load ratio E can be decreased by reducing the size of the
refinement part. Because both ¢ and E depend on the
partition, an optimal partition requires the solution of a
discrete optimization problem, which could be very com-
plex for large d.

IV. HEURISTICS

From (5) it is clear that S can be increased by increasing
q or by decreasing E. An easier way to maximize S is to
maximize ¢ and minimize F independently. Our heuristic
approach iteratively maximizes ¢ and minimizes F. It will
(partly) perform the next four steps in succession.,

A Make the latent variable which is responsible for Hgo
active;

B Make the active variable which is responsible for Hr
latent;

C Make a subset of latent variables which is coupled to
the previous active variable active;

D Make a subset of active variable latent in order to de-
crease E.

All steps lead to transitions of only a few variables. One
could start with a singlerate method but also from a given
partition. Afterwards it should be dynamically updated
based on the local error estimates.
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