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Element-based Topological Index Reduction for
Differential-Algebraic Equations in Circuit

Simulation
Simone B̈achle, Falk Ebert

Abstract— In this paper we will discuss certain aspects of the
transient simulation of electrical circuits. It is a well known
problem that DAEs in circuit simulation may possess a higher
index (e.g. 2) and thus exhibit undesirable numerical behaviour.
While methods for the reduction of the higher index exist, they
are usually algebraic in nature. The large size of the systems in
VLSI circuit simulation prohibits the use of algebraic methods
for index reduction. We will present a topological approachto
index reduction that changes certain elements of the circuit netlist
to obtain a circuit DAE with usually greatly improved numeri cal
behaviour.

I. I NTRODUCTION

SIMULATION of electrical circuits is a commonly used
tool to test new electrical circuits prior to producing an

actual prototype. Especially in chip design it is importantto
be able to have a quick and reliable method for simulating
the behaviour of a circuit. But, in this context, the respective
circuits tend to contain millions of elements, thus, making
simulation difficult, just because of the sheer size of the
problem.

The main methods for the simulation of circuits are the
Modified Nodal Analysis (MNA), the charge-/flux-oriented
MNA (MNA c/f) and the Sparse Tableau Approach (STA),
cf. [1]. Kirchhoff’s Laws and branch constitutive relations
(BCR) are set up to form a system of equations describing the
important properties of the circuit, e.g., voltages and currents.

As this system contains differential relations as well as
algebraic ones, it is called ’Differential-Algebraic-Equation’
(DAE). A well known problem of DAEs is that besides
obvious algebraic relations, they may contain so-called hidden
constraints that are revealed only by differentiating certain
equations or parts thereof. In circuit simulation, these DAEs
are known to have index 2, given some topological properties
of the network. This higher index leads to several undesir-
able effects in the numerical solution of the DAEs. Recent
approaches try to lower the index of DAEs to improve the
numerical behaviour. These methods usually involve costly
algebraic transformations of the equations. Especially, for
large scale circuit equations, these transformations become too
costly to be efficient.
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The hidden constraints in the case of the MNA and the MNA
c/f have been determined, see [2], and in [3] it has been shown,
how they can be obtained without algebraic transformationsof
the circuit equations by only using information contained in
the topology of the circuit. The information obtained in this
way has until now mainly been used to determine consistent
initial values, fulfilling the hidden constraints as well, for
numerical integration of the circuit equations. Recently,a
concept calledminimal extension, see [4], has been used to
include the hidden constraints into the process of integration,
see [5]. The DAE obtained in this way is of index 1, while,
especially large scale systems, can be of index 2. DAEs
of higher index than 1 are usually unstable with respect to
numerical integration, i.e., they are usually more costly to
solve, while accuracy might suffer as well.

We will take a different approach to the topological
analysis, one that focuses on index reduction. It will be
shown that it is possible to incorporate the hidden constraints
into the network equations while retaining the MNA or MNA
c/f structure of the equations. The method proposed here
will use the results of the topological index analysis on a
circuit element level. The main advantage will be, that no
algebraic transformations of the circuit equations will have to
be performed, but the method will change the circuit itself.
Hence, prior to the actual simulation, a preprocessing step
will have to be performed, analyzing the structure of the
circuit and exchanging certain elements by newly defined
elements, in order to obtain a circuit that possesses a DAE
of index 1. The virtue of this approach is that after the
preprocessing, no more algebraic transformations have to
be performed, but the netlist, i.e., the list containing all
structure- and element related information, itself is changed.
The changed netlist can then be processed by the same
simulation tools as the original netlist, provided they areable
to handle the introduced new elements. As the new netlist
produces circuit equations of index 1, the integration process
is usually much faster and more accurate than for the index
2 case. The linear systems arising from discretization are
better conditioned. Additionally, it is much easier to obtain a
set of consistent initial values for the index 1 case. The only
extra cost is a one-time preprocessing step, while existing
software can be used for integration of the equations. A tool
calledETICS (Element-basedTopologicalIndex reduction in
Circuit Simulation) that performs this preprocessing step is
in preparation.



2

II. ELEMENT REPLACEMENT

The main topological properties of a circuit that are re-
sponsible for a higher-index behaviour are CV loops, i.e.,
loops formed by branches that are occupied by capacitances
or voltage sources, and LI cutsets, i.e., cutsets formed by
branches containing inductances and current sources only.For
every loop and every cutset, an orientation can be chosen. A
more detailed description of these structures is given in [6].
Here, only CV loops will be considered. Loops of voltage
sources and cutsets of current sources are generally not al-
lowed, because they might produce meaningless equations.
We will derive expressions for the hidden constraints in such
a way that the steps needed to perform an index reduction
become clearly visible. Consider one specific CV loop. Let
n

loop
C and nl

V oop be the number of capacitances and voltage
sources in the loop, respectively. The hidden constraint arising
from that CV loop can be interpreted as follows:

• Denote the voltages across capacitances in the loop by
v

loop
C,j , j = 1 . . . n

loop
C the loop),

• denote the voltages acrossv
loop
s,j , j = 1 . . . n

loop
V (number

of voltage sources in the loop).
• Setα∗,j = ±1, where∗ ∈ {C, V }. For every element in

the loop, the constantα∗,j is 1 if the element is oriented
in the same way as the loop and−1 otherwise.

• Kirchhoff’s voltage law over that loop states that

n
loop

C∑

j=1

αC,jv
loop
C,j +

n
loop

V∑

j=1

αV,jv
loop
s,j = 0. (1)

• The derivative of (1) holds as well,

n
loop

C∑

j=1

αC,j

d

dt
v

loop
C,j +

n
loop

V∑

j=1

αV,j

d

dt
v

loop
s,j = 0. (2)

As the currents through capacitances depend on the derivatives
of the respective capacitance voltages, equation (2) imposes a
constraint on the branch currents as well. This constraint is
not originally visible in the system and has been obtained by
differentiation, thus representing a hidden constraint.
We want condition (2) to be fulfilled, hence, it has to appear
explicitly in the circiut equations. For this purpose, we choose
one of the involved capacitances. Without loss of generality,
we assume that this isCloop

1
and that the direction of the loop

is identical to the one of the capacitance. The corresponding
voltage isv

loop
C,1 . Then, we split (2) as follows

d

dt
v

loop
C,1 = −

n
loop

C∑

2

αC,j

d

dt
v

loop
C,j −

n
loop

V∑

1

αV,j

d

dt
v

loop
s,j . (3)

We multiply this equation byCloop
1

to obtain

iC,1 = C
loop
1

d

dt
v

loop
C,1 = −

n
loop

C∑

2

αC,jC
loop
1

d

dt
v

loop
C,j

−

n
loop

V∑

1

αV,jC
loop
1

d

dt
v

loop
s,j . (4)
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Fig. 1. Test circuit of index 2 (left) and circuit after element replacement
(right)

orginal System with DCS emulated DCS

system size 3 3 5
function evaluations 2363 397 187
time steps 432 73 34
accuracy 1E-4 2E-7 2E-7

TABLE I

TEST RESULTS WITHRADAU5 AND TOL = 1E-8

By definition, the termC
loop
1

v
loop
C,1 describes the chargeqloop

1

of the capacitance andCloop
1

d
dt

v
loop
C,1 =

d
dt

q
loop
1

is the current
through this capacitance. In this way, we have expressed
one branch current explicitly. Hence, we can remove the
capacitanceCloop

1
and replace it by a current source that

provides the current given by the right hand side of (4). This
differentially controlled current source (DCS) may again be
interpreted as a current controlled current source when the
controlling derivatives of capacitance voltages are takenas
currents through these capacitances (emulated DCS). This,
however, will usually lead to the introduction of additional el-
ements to measure the current through the capacitances. These
re-interpretations of the capacitanceC

loop
1

do not change the
analytical solution of the circuit equations. The numerical
properties of the circuit, however, have changed in such a way
that constraint (2) now explicitly appears among the equations
and will thus be respected by the numerical method used to
solve the equations.
A similar approach can be taken for LI cutsets, cf. [6].

III. N UMERICAL TESTS

We consider the small linear test circuit in Fig. 1. The
element replacement procedure has been applied to this circuit
an the capacitanceC1 has been replaced by a differentially
controlled current source. Some test results with the DCS and
an emulated DCS are shown in Table I.
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