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Abstract— In this paper we will discuss certain aspects of the  The hidden constraints in the case of the MNA and the MNA
transient simulation of electrical circuits. It is a well known ¢/f have been determined, see [2], and in [3] it has been shown
problem that DAEs in circuit simulation may possess a higher 1,y they can be obtained without algebraic transformatains

index (e.g. 2) and thus exhibit undesirable numerical behawur. the circuit Hi b | ina inf f tained i
While methods for the reduction of the higher index exist, trey € circuit equations by only using Information contained |

are usually algebraic in nature. The large size of the systemin the topology of the circuit. The information obtained insthi
VLSI circuit simulation prohibits the use of algebraic methods way has until now mainly been used to determine consistent

for index reduction. We will present a topological approachto jnitial values, fulfilling the hidden constraints as welbrf
index reduction that changes certain elements of the circtinetlist — ;merical integration of the circuit equations. Recenty,
to obtain a circuit DAE with usually greatly improved numeri cal . .
behaviour. concept calledninimal extension, see [4], has been used to
include the hidden constraints into the process of integrat
see [5]. The DAE obtained in this way is of index 1, while,
especially large scale systems, can be of index 2. DAEs
of higher index than 1 are usually unstable with respect to
IMULATION of electrical circuits is a commonly used numerical integration, i.e., they are usually more costy t
ool to test new electrical circuits prior to producing arsolve, while accuracy might suffer as well.
actual prototype. Especially in chip design it is importémt  We will take a different approach to the topological
be able to have a quick and reliable method for simulatirapalysis, one that focuses on index reduction. It will be
the behaviour of a circuit. But, in this context, the respect shown that it is possible to incorporate the hidden conssai
circuits tend to contain millions of elements, thus, makingto the network equations while retaining the MNA or MNA
simulation difficult, just because of the sheer size of thgf structure of the equations. The method proposed here
problem. will use the results of the topological index analysis on a
The main methods for the simulation of circuits are theircuit element level. The main advantage will be, that no
Modified Nodal Analysis (MNA), the charge-/flux-orientedalgebraic transformations of the circuit equations wilddo
MNA (MNA c/f) and the Sparse Tableau Approach (STA)be performed, but the method will change the circuit itself.
cf. [1]. Kirchhoff's Laws and branch constitutive relat®n Hence, prior to the actual simulation, a preprocessing step
(BCR) are set up to form a system of equations describing tivll have to be performed, analyzing the structure of the
important properties of the circuit, e.g., voltages andents. circuit and exchanging certain elements by newly defined
As this system contains differential relations as well a@ements, in order to obtain a circuit that possesses a DAE
algebraic ones, it is called ’Differential-Algebraic-Eafion’ of index 1. The virtue of this approach is that after the
(DAE). A well known problem of DAEs is that besidespreprocessing, no more algebraic transformations have to
obvious algebraic relations, they may contain so-calleidén be performed, but the netlist, i.e., the list containing all
constraints that are revealed only by differentiating aiart structure- and element related information, itself is geah
equations or parts thereof. In circuit simulation, theseEBA The changed netlist can then be processed by the same
are known to have index 2, given some topological propertiggnulation tools as the original netlist, provided they abde
of the network. This higher index leads to several undeste handle the introduced new elements. As the new netlist
able effects in the numerical solution of the DAEs. Receproduces circuit equations of index 1, the integration gssc
approaches try to lower the index of DAEs to improve this usually much faster and more accurate than for the index
numerical behaviour. These methods usually involve costly case. The linear systems arising from discretization are
algebraic transformations of the equations. Especially, fbetter conditioned. Additionally, it is much easier to obta
large scale circuit equations, these transformationsrbedoo set of consistent initial values for the index 1 case. The onl
costly to be efficient. extra cost is a one-time preprocessing step, while existing
software can be used for integration of the equations. A tool
Institut fur Mathematik, MA 3-3, Technische Universit Berlin, called ETICS (Element-based opologicall ndex reduction in
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technologies”.
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[I. ELEMENT REPLACEMENT 1 e
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The main topological properties of a circuit that are re-
sponsible for a higher-index behaviour are CV loops, i.e.,| [* | v H |
loops formed by branches that are occupied by capacitance T° T°
or voltage sources, and LI cutsets, i.e., cutsets formed hy
branches containing inductances and current sourceseony. o o

Fig. 1. Test circuit of index 2 (left) and circuit after elenteeplacement
every loop and every cutset, an orientation can be chosen( %h)
more detailed description of these structures is given ]n [6

%1

Here, only CV loops will be considered. Loops of voltage [[ orginal System| with DCS | emulated DCS]
sources and cutsets of current sources are generally not abystem size 3 3 5
lowed, because they might produce meaningless equations|_function evaluations|| 2363 397 187
We will derive expressions for the hidden constraints inhsuc time steps 432 3 34
e wl V& expressi ' INtS INNSUC—5ccuracy 164 2E7 2E7

a way that the steps needed to perform an index reduction
become clearly visible. Consider one specific CV loop. Let
nlco"” andn!,oop be the number of capacitances and voltage
sources in the loop, respec_tively. The hidden constraisinay By definition, the ternClO"p loop describes the charg;éo‘)p
from that CV loop can be interpreted as follows: loop d loop d loop

of the capacitance and,"™ j;v-" = ;¢ Is the current

« Denote the voltages across capacitances in the loop though this capamtance In this way, we have expressed

TABLE |
TEST RESULTS WITHRADAUS AND TOL = 1E-8

loop - loop
vegrJ=1 the loop), iy one branch current explicitly. Hence, we can remove the
(o) . 00 . .
« denote the voltages acros$?”, j=1. P (number  capacitanceC!°”” and replace it by a current source that
of voltage sources in the Ioop) provides the current given by the right hand side of (4). This

o Seta,; = +1, wherex € {C,V'}. For every element in djfferentially controlled current source (DCS) may agai b
the loop, the constant, ; is 1 if the element is oriented interpreted as a current controlled current source when the

in the same way as the loop ard otherwise. controlling derivatives of capacitance voltages are talsn
« Kirchhoff's voltage law over that loop states that currents through these capacitances (emulated DCS). This,
nleop nloop however, will usually lead to the introduction of additibred
Z O[C]Ug)(;p i Z o ]Uloop _ @) ements to measure the current through the capacitancese The

re-interpretations of the capacitan€4’’? do not change the
analytical solution of the circuit equations. The numdrica

« The derlvatlve of (1) hOIdS as well, properties of the circuit, however, have changed in suchya wa

nloer nloor that constraint (2) now explicitly appears among the eguati
Z ac, dtvlc?‘;” + Z av o if]"f’ =0. (2) and will thus be respected by the numerical method used to
solve the equations.

As the currents through capacnances depend on the deesat!’ similar approach can be taken for LI cutsets, cf. [6].

of the respective capacitance voltages, equation (2) iegpas

constraint on the branch currents as well. This constraint i Il. N UMERICAL TESTS
not originally visible in the system and has been obtained byWe consider the small linear test circuit in Fig. 1. The
differentiation, thus representing a hidden constraint. element replacement procedure has been applied to thistcirc

We want condition (2) to be fulfilled, hence, it has to appean the capacitanc€; has been replaced by a differentially
explicitly in the circiut equations. For this purpose, wecke controlled current source. Some test results with the DGE an
one of the involved capacitances. Without loss of gengralitn emulated DCS are shown in Table I.

we assume that this i§}°” and that the direction of the loop
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