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Abstract—In radio frequency applications, oscillatory

signals with widely separated time rates arise in electric

circuits. A multidimensional modelling of these signals en-

ables an alternative approach for a numerical simulation.

The representation of frequency modulated signals leads

to warped multirate partial differential algebraic equations,

where initial-boundary value problems are considered. The

selection of an appropriate local frequency function is cru-

cial for the efficiency of the model. We present strategies

based on minimisation criteria for determining a suitable

local frequency function. Numerical methods using the re-

sulting conditions are discussed.
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I. Multidimensional Signal Model

To outline the multidimensional model, we consider the
frequency modulated (FM) signal

x(t) =
[
1 + α sin

(
2π
T1

t
)]
· sin

(
2π
T2

t + β sin
(

2π
T1

t
))

(1)

with T1 À T2. The parameters α and β introduce am-
plitude and frequency modulation, respectively. Hence
a huge number of oscillations arises in the time inter-
val [0, T1], which limits the size of time steps for resolving
the signal. However, we can assign an own variable for
each time scale. Consequently, we obtain a multivariate
function (MVF) of the signal (1), namely

x̂1(t1, t2) =
[
1 + α sin

(
2π
T1

t1

)]

· sin
(
2πt2 + β sin

(
2π
T1

t1

))
,

(2)

where the period of the fast scale t2 is standardised to 1.
The original signal (1) can be reconstructed completely
via x(t) = x̂1(t, t/T2). Fig. 1 illustrates this MVF. Un-
fortunately, many oscillations arise in the domain of de-
pendence. Thus the straightforward representation (2) is
inefficient. Alternatively, we just include the amplitude
modulation part of the signal (1) in the MVF and achieve

x̂2(t1, t2) =
[
1 + α sin

(
2π
T1

t1

)]
· sin (2πt2) . (3)

Fig. 2 demonstrates that this representation is appropri-
ate, since just one oscillation proceeds in each coordinate
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Fig. 1. Naive MVF of FM signal.
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Fig. 2. Adequate MVF of FM signal.

direction. The frequency modulation part of (1) is de-
scribed by the time-dependent warping function

Ψ(t) = 1
T2

t + β
2π sin

(
2π
T1

t
)

. (4)

Now the reconstruction of (1) reads x(t) = x̂2(t,Ψ(t)).
The derivative ν := Ψ′ can be seen as a local frequency
of the signal. The inefficient MVF (2) corresponds to the
local frequency ν ≡ 1/T2, which is not reasonable.

This discussion shows that the multidimensional model
of a FM signal is not unique. Different local frequency
functions imply different MVFs. Inappropriate choices of
the local frequencies produce undesired oscillations in the
corresponding MVF. The presented model is also appli-
cable, if only the fast time scale is periodic, whereas the
slow time scale is aperiodic.
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II. Warped MPDAEs

The mathematical model of electric circuits yields dif-
ferential algebraic equations (DAEs), which we write in
the form

dq(x)
dt

= f(x(t)) + b(t). (5)

Thereby, the solution x represents unknown node voltages
and branch currents. We assume that the signal x exhibits
a time behaviour as outlined in the previous section. The
application of the multidimensional model transforms the
system of DAEs into a multiscale system. Brachtendorf
et al. [1] introduced the corresponding system of multi-
rate partial differential algebraic equations (MPDAEs) in
case of constant time rates. Considering the model for
FM signals from the previous section, Narayan and Roy-
chowdhury [2] constructed the corresponding system of
warped MPDAEs

∂q(x̂)
∂t1

+ ν(t1)
∂q(x̂)
∂t2

= f(x̂(t1, t2)) + b(t1), (6)

where x̂ denotes the MVF of x. An appropriate local
frequency function ν is unknown a priori, too.

The determination of quasiperiodic solutions of the
DAEs (5) yields biperiodic boundary conditions for
the MPDAEs (6). Considering the initial value prob-
lem x(0) = x0 of (5), we obtain the initial-boundary value
problem

x̂(0, t2) = h(t2) for all t2,
x̂(t1, t2 + 1) = x̂(t1, t2) for all t1 ≥ 0, t2,

(7)

where the predetermined function h fulfills h(0) = x0.
Consequently, we achieve a solution of the DAEs (5) via
the reconstruction x(t) = x̂(t,

∫ t

0
ν(s) ds).

III. Minimisation Criteria

Solutions of the system (6), which exhibit the same
initial values, are connected by a certain transformation.
Surprisingly, a MVF x̂ satisfying (7) exists for arbitrary
given local frequency function ν. The problem is to find an
adequate choice, since inappropiate frequencies produce
inefficient MVFs as shown in the first section. In [2], phase
conditions are successfully applied to identify suitable lo-
cal frequencies. However, the efficiency of this strategy
can not be guaranteed in general.

Alternatively, Houben [3] proposes a minimisation cri-
terion of the form

s(t1) :=
∫ 1

0

∥∥∥∥
∂q(x̂)
∂t1

∥∥∥∥
2

dt2 → min. (8)

for each t1 ≥ 0 using the Euclidean norm, which shall
avoid unessential oscillations. This approach produces a
necessary condition for an optimal solution, which causes
an explicit formula for the local frequency function in de-
pendence on the MVF. However, the minimisation (8) is
based on the charge term q(x̂) instead of the MVF x̂
itself, since a direct application of information from the
MPDAE (6) becomes feasible in this case.

We want to achieve more efficiency and flexibility by
demanding the minimisation (x̂ = (x̂1, . . . , x̂k)>)

p(t1) :=
∫ 1

0

k∑

l=1

wl

(
∂x̂l

∂t1

)2

dt2 → min. (9)

for each t1 ≥ 0, where w1, . . . , wk ≥ 0 represent constant
weights. Hence the minimisation is based on a weighted
norm of the derivative of the solution x̂ itself. In this
case, we do not obtain an explicit formula for the local
frequency. Instead, a variational calculus based on the
transformation of solutions to the system (6) yields a nec-
essary condition for the MVF. Thus the corresponding
local frequency function is determined indirectly.

IV. Numerical Methods

For solving biperiodic boundary value problems of the
MPDAE system (6), a specific method of characteris-
tics represents a suitable technique, see [4]. In case of
initial-boundary conditions (7), this strategy becomes in-
efficient. Thus we focus on numerical methods, which are
produced by semidiscretisation. In [3], a method of lines
has been used successfully, where the condition from the
criterion (8) has been included. Thus we observe corre-
sponding schemes, too. For example, using asymmetric
differences of second order yields the system of DAEs

∂q(x̃j)
∂t1

= f(x̃j) + b(t1)

− ν(t1)
h2

[
3
2
q(x̃j)− 2q(x̃j−1) +

1
2
q(x̃j−2)

] (10)

for j = 1, . . . , m with approximations x̃j(t1)
.= x̂(t1, jh2).

The periodic boundary conditions are used to identify
some approximations. Thus we obtain a system of mk
DAEs for mk unknown functions.

Alternatively, discretisations analogue to the Rothe
method for parabolic PDEs are feasible. In each case,
the condition from the minimisation criterion (8) or (9)
has to be included in discretised form.
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