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Abstract—In a recent paper, an energy-based theory of

electromagnetism was proposed. The fundamental postu-

late has the form of a diagram of interconnected energy

reservoirs and the completely covariant equations stating

energy conservation in this diagram are shown to be a

combination of Maxwell’s equations with the constitutive

laws of the material. This formulation clarifies several is-

sues related to the computation of dissipative and coupled

phenomena in magnetic materials, dielectrics and conduc-

tors.
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I. Introduction

Maxwell’s equations are generally presented as the fun-
damental equations that rule electromagnetic (EM) phe-
nomena. But they address only one side of the question :
they do not provide any energy conservation rule and they
leave all material aspects aside. Consequently, they need
to be complemented by constitutive laws, which are often
regarded as ad hoc relations to close the system, not di-
rectly subjected to physical laws. In order to tackle with
multi-physics problems in a consistent way, it is however
desirable, if not necessary, to dispose of a theory of elec-
tromagnetism where energy aspects are involved from the
beginning and throughout. This paper recalls briefly the
theory presented in [1] and develops in more details the
aspects related to multiphysics computations in the pres-
ence of electromagnetic fields. The issues of electromag-
netic forces, charges and superconductors, material laws
(hysteresis and striction), duality, and the definition of
lumped parameters are analysed in the light of the en-
ergy approach.

II. Theory

A. Energy diagram

Let us state as a postulate that, in an arbitrary material
region M , electromagnetic energy flows according to the
diagram depicted in Fig. 1. The diagram consists of four
energy reservoirs. Each reservoir is associated with a state
variable, resp. the magnetic vector potenrial A, the elec-
tric displacement D, the current density J and the electric
scalar potential U , from the upper left to the lower right
corner. The A−reservoir contains the magnetic energy
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Fig. 1. Electromagnetic energy diagram in the material domain M .

(p−1
t ΨM )( dA, Z), a function of the induction dA (the ex-

terior derivative d play here the role of the curl opera-
tor) but possibly also of one or several other fields repre-
sented in a generic way by the unspecified variable Z. The
D−reservoir contains the electric energy (p−1

t ΨE)(D, Z),
a function of the electric displacement D and possibly of
some other fields Z as well. The most obvious interpre-
tation of Z is the mechanical strain ε but there might
be dependencies of other origins as well, e.g. chimical
(Think of a battery). The U−reservoir is always empty.
The J−reservoir finally, contains the kinetic energy of the
charge carriers. If mc denote the mass of one charge car-
rier, qc its charge, ρc the density of charge carriers and Vc

their velocity field with respect to the crystal lattice, the
current density in E3 is j = qcρc(v+ptVc), and the kinetic
energy density writes ρΨ

K(j) = ρcmc(v+ptVc)
2/2 = αj2/2

in E3, with α = mc/(ρcq
2
c ).

The energy flows presented in Fig. 1 can be classified
into four categories. The white-headed arrows represent
4 internal volume flows depending on the state variables
only, and 2 surface flows depending on the state variables
and on a boundary magnetic field H∂ . The black-headed
arrows represent 3 dissipative volume flows involving the
state variables (U excepted) and and empirical dissipative
generalised forces Hi, Ei and Ej of which the exact phys-
ical interpretations are discussed below. Finally, 2 flows,
ẆM and ẆE , connect the electromagnetic energy diagram
with the exterior and account respectively for electric
and magnetic energy converted into non-electromagnetic
forms of energy (e.g. mechanical, chemica. . . ).

The structure of this diagram and the mathematical
expression of the flows constitute the foundation of this
theory. They tell something fundamental about the Uni-
verse and how electromagnetic fields behave and interact
with matter and spacetime.
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B. Conservation equations

As the fields A, D, J and U are independent variables,
they can be varied freely in order to obtain, following a
variational line of argument, the conservation equations
implied by the structure of the diagram. One obtains for
an arbitrary region Ω of which the relative velocity field
with respect to the material domain M is v

curl h̄ = j + Lv d (1)

ē = −Lv a − gradu (2)

ej + αLv+vc
j = −Lv a − gradu (3)

0 = div (j + Lv d) (4)

where Lv denotes the co-moving time derivative [4] and
with the magnetic and electric fields defined by

h̄ ≡
(

∂b ρΨ
M

)

(curla, z) + hi, (5)

ē ≡
(

∂d ρΨ
E

)

(d, z) + ei. (6)

The boundary condition writes h̄ = h∂ on ∂Ω and the
equations

ẆM =

∫

Ω

(

Lv ρΨ
M

)

(curla, z)

+

∫

Ω

(

∂zρ
Ψ
M

)

(curla, z) ⊗ Lv z (7)

ẆE =

∫

Ω

(

Lv ρΨ
E

)

(d, z)

+

∫

Ω

(

∂zρ
Ψ
M

)

(curla, z) ⊗ Lv z (8)

for getting the balance right.

III. Discussion

We have so gathered all necessary elements to discuss
a number of issues related to multiphysics computations
in the presence of electromagnetic fields.

A. Electromagnetic forces

By setting ∂tA = Lv a = 0, the A−reservoir is iso-
lated from the rest of the electromagnetic energy diagram,
Fig. 1. Similar considerations hold for the D−reservoir,
so that the variation of energy

ẆM + ẆE = ∂tΨM |
Lv a=0

+ ∂tΨE|Lv d=0
(9)

represents the power converted into non-
electromechanical forms of energy (mechanical, chemi-
cal. . . ), the conditions Lv a = 0 and Lv d = 0 being
the precise mathematical expression of what is usually
stated “holding (magnetic or electric) fluxes constants”.

Formal expressions of ẆM and ẆE are given by (7) and
(8). In particular, factorising ∇v, leads to the definition
of the Maxwell stress tensor of the material, which is the
fundamental quantity representing the electromechanical
coupling and the unifying ingredients of virtually all force
formulae used in numerical computations [2].

B. Charges and superconductors

Electric charges are not explicitly present in the dia-
gram, nor in the conservation equations. They are defined
by

ρQ = dD = div d. (10)

Equation (3) is the equilibrium equation for charge car-
riers, up to a factor qc. The dynamics of charges is thus
made by the energy-based approach an integral part of the
theory. The term −gradu is the applied electrostatic force
and the term ej = σ−1j is the viscous force opposed by
the crystal lattice. When the charge carrier accelerates,
a certain amount of energy is given to increase its kinetic
energy and another amount of energy to increase the mag-
netic energy of the system, as the accelerated particle is
associated with a larger current, which in turn generates
a larger magnetic field. These two energy transfers are
respectively represented by the forces (up to the factor qc

again) αLv+ptVc
j and ∂tA that can be regarded as two

inertial forces of different natures.
In practice, the J−reservoir can often be considered

as being empty as well, because of the very small value
of α (negligible inertia of the charge carriers), and the
corresponding term in (3) can be disregarded. However,
in superconductors, for which σ is infinite (ej = 0) and
gradu is zero, (3) reads

αLv+ptVc
j = −Lv a. (11)

If the cloud of charge is not too much distorted, one has
Lv ≡ ∂t, so that London’s equation for superconductors
a = −αj is found back.

The inertia of the charge carrier is also at the root of
the definition of the static charges that are present at the
surface of current carrying conductors [5]. Identifying the
left hand sides of (2) and (4) and assuming ei = 0, one
has

(

∂d ρΨ
E

)

(d) = ε−1
0 d = σ−1j + αLv+ptVc

j. (12)

The divergence of the right-hand side is identically zero
(div and Lv commute) inside the conductor, but the
term in α has a non-zero contribution on the surface of
the conductor, whence the expression ε0αLv+ptVc

j · n of
the surface charges.
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