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Abstract—The electrodynamic simulation of high-

voltage technical devices can be performed under the

electro-quasistatic assumption. In order to avoid large

spatial discretization domains, a Finite-Element-Method

(FEM) is coupled to a Boundary-Element-Method (BEM)

which implicitly asserts the electrophysical asymptotic at-

tenuation condition. A symmetric FEM-BEM coupled for-

mulation in time domain is presented. First numerical re-

sults are shown for the simulation of a three dimensional

high-voltage application.
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I. Introduction

Transient simulations under the electro-quasistatic as-
sumption, where the time derivative of the magnetic flux
density in the induction law is omitted, can be performed
for the analysis of technical devices for which electromag-
netic wave propagation effects are negligible and where the
electric energy density of the problem is much greater than
the magnetic energy density. Typically, these conditions
are valid for applications from high-voltage technology or
microelectronics. Electro-quasistatic simulations have al-
ready been presented using volume-based discretization
schemes e.g. in [1].

II. Transient electro-Quasistatic Fields

Introducing the electro-quasistatic assumption ∂t
~B = 0

into Maxwell’s equations, a scalar potential function ϕ
exists which allows to compute the resulting irrotational
electric field strengths ~E via ~E = − gradϕ. As a con-
sequence, the governing differential equation for electro-
quasistatic fields reads

−div ((κ + ε∂t) gradϕ) = 0.

Here, the electric conductivity is denoted by κ, while the
electric permittivity is denoted by ε.

III. Domain Decomposition

A. Model Problem

For the mathematical modelling of technical problems,
the model problem is defined as follows:

−div (κ + ε∂t) gradϕ = 0 in ΩFEM, (1)
−div (ε0∂t) gradϕ = 0 in ΩBEM, (2)

Fig. 1. Geometry of the model problem

in the unbounded domain Ω = ΩFEM∪Γc∪ΩBEM with the
interface boudary Γc. Furthermore, ΩFEM = ΩFEM ∪ Γc

and ΩBEM = ΩBEM ∪ Γc holds.

B. Finite-Element Formulation

For the closure of ΩFEM, the standard variational for-
mulation of (1) can be achieved by multiplication with a
trial function v and application of Green’s first integral
theorem:

w

ΩFEM

(grad ϕ) (κ + ε∂t) (grad v)dΩ−

w

Γc

(κ + ε∂t) γint
1 ϕ γint

0 v(~r)dΓ = 0,
(3)

with the interior trace operator γint
0 and the operator of

the interior normal derivative γint
1 . The second integral

term allows the coupling to the boundary element formu-
lation.

C. Boundary-Element Formulation

A symmetric formulation of the exterior boundary-
value problem in eqn. (2) can be gained, if the complete
Calderón projector

Cext =
(

1
2I +K −V
−D 1

2I − K′

)
with the factor 1/2 for smooth boundary points is assem-
bled [2]. Here, the single layer potential operator V, the
hypersingular potential operator D and the double layer
potential operator K and its adjoint K′, respectively, are
used. The identity operator is denoted by I. Hence, using
the exterior trace operator γext

0 and the operator of the
exterior normal derivative γext

1 , the system of boundary
integral equations(

γext
0 ∂tϕ

γext
1 ∂tϕ

)
=

(
1
2I +K −V
−D 1

2I − K
′

) (
γext
0 ∂tϕ

γext
1 ∂tϕ

)
(4)

characterizes the solution of the model problem in the
domain ΩBEM.
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IV. Symmetric Coupling

A. Continuous Formulation

The symmetric BEM formulation can be coupled to the
finite-element formulation (3) by expressing γint

1 ϕ by the
second boundary integral equation of the system (4) and
by applying the interface conditions:

γint
0 ϕ = γext

0 ϕ, (5)
(κ + ε∂t) γint

1 ϕ = (ε0∂t) γext
1 ϕ, (6)

for all ~r ∈ Γc, [2, 3]. (6) expresses the normal conti-
nuity of the total (conduction + displacement) current
density. According to (6), substituting (ε0∂t) γext

1 ϕ for
(κ + ε∂t) γint

1 ϕ in (3), and inserting ε0γ
ext
1 ∂tϕ from (4)

yields the variational equation
w

ΩFEM

(gradϕ) (κ + ε∂t) (grad v)dΩ−

w

Γc

ε0

(
−Dγext

0 ∂tϕ +
(

1
2
I − K′

)
γext
1 ∂tϕ

)
γint
0 vdΓ = 0.

(7)

Another variational equation is obtained from the first
equation of (4), with another trial function τ :

w

Γc

ε0

((
−1

2
I +K

)
γext
0 ∂tϕ− Vγext

1 ∂tϕ

)
τdΓ = 0. (8)

B. Discrete Formulation

These variational formulations can be discretized us-
ing the Galerkin scheme, which results in finite-element
stiffness matrices A for the electrical conductivity and B
for the electrical permittivity. The potential operators of
the boundary integral equations are discretized using the
Galerkin-scheme, too, resulting in the single layer poten-
tial matrix V, the hypersingular potential matrix D and
the double layer potential matrix K. Additionally, a mass
matrix M is needed. This leads to the following discrete
form of equations (7-8), which is a system of ordinary
differential equations (ODE) in the time domain:Aff Afc 0

Acf Acc 0
0 0 0

 Φf

Φc

t

 +

Bff Bfc 0
Bcf Bcc + D

(
− 1

2M
T + KT

)
0

(
− 1

2M + K
)

−V

 d
dt

Φf

Φc

t

 = 0.

(9)

Herein, the vector of the degrees of freedom (DoF) is
divided into three partitions. The first partition, Φf , rep-
resents the DoF inside the domain ΩFEM. The second
partition of this vector, Φc, consists of the DoF of the
scalar potential on the interface boundary Γc. The third
partition contains the DoF of the normal derivative val-
ues t of the scalar potential on the interface boundary Γc

as well. The latter two partitions are needed to evaluate
the scalar potential in ΩBEM by Kirchhoff’s representation
formula.

V. Solution of the ODE System

The system (9) is of the form Hx + Nẋ = 0. Hence,
the time discretization can be performed using singly-
diagonal-implicit-Runge-Kutta-method (see [1]), resulting
in a symmetric but indefinite linear system of equations
which can be solved by a preconditioned MinRes iterative
solver.

VI. First Numerical Results

First numerical results of electrostatic FEM-BEM com-
putations of an exterior Dirichlet problem are presented.
For this purpose, a FEM simulation was performed first
in accordance to the problem definition of an high-voltage
surge arrester characterized in an IEC norm, [4]. The
Dirichlet data on the boundary needed for the BEM sim-
ulations are obtained from the preceding FEM simula-
tion. The difference in the scalar electric potential distri-
butions, which are shown in Fig. (2), results substan-
tially in the homogenous Dirichlet boundary condition
for the FEM simulation according to the IEC norm in
contrast to the asymptotic attenuation condition of the
BEM simulation. The boundary for the BEM computa-
tion is discretized with 21401 nodes and 42814 boundary
elements; therefore, a compression of the BEM matrix
blocks is essential which is done by using the Adaptive-
Cross-Approximation, which approximates the BEM ma-
trix blocks by low-rank matrices, see [5].

Fig. 2. Electrostatic simulations of a high-voltage surge arrester.
From left: geometry, scalar potential computed by FEM with ϕ = 0
on the boundary and by FEM-BEM.
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