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Abstract—Stochastic differential algebraic equations

(SDAEs) arise as a mathematical model for electrical net-

work equations that are influenced by additional sources of

Gaussian white noise.

We discuss adaptive linear multi-step methods for their

numerical integration, in particular stochastic analogues of

the trapezoidal rule and the two-step backward differen-

tiation formula. For the case of small noise we present a

strategy for controlling the step-size in the numerical in-

tegration. It is based on estimating the mean-square local

errors and leads to step-size sequences that are identical

for all computed paths.

Test results illustrate the performance of the presented

methods.
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I. Transient noise analysis in circuit simulation

The increasing scale of integration, high tact frequen-
cies and low supply voltages cause smaller signal-to-noise
ratios. In several applications the noise influences the
system behavior in an essentially nonlinear way such that
linear noise analysis is no longer satisfactory and transient
noise analysis, i.e. the simulation of noisy systems in the
time domain, becomes necessary.

We deal with the thermal noise of resistors as well as the
shot noise of semiconductors that are modelled by addi-
tional sources of additive or multiplicative Gaussian white
noise currents. Combining Kirchhoff’s Current law with
the element characteristics and using the charge-oriented
formulation yields a stochastic differential algebraic equa-
tion (SDAE) of the form

A
d

dt
q(x(t)) + f(x(t), t) +

m∑
r=1

gr(x(t), t)ξr(t) = 0 , (1)

where A is a constant singular matrix determined by
the topology of the electrical network and ξ is an m-
dimensional vector of independent Gaussian white noise
sources (see e.g. [1], [2]). One has to deal with a large
number of equations as well as of noise sources. Com-
pared to the other quantities the noise intensities gr(x, t)
are small.

We understand (1) as a stochastic integral equation

Aq(X(s))|tt0 +

∫ t

t0

f(X(s), s)ds

+

m∑
r=1

∫ t

t0

gr(X(s), s)dW (s) = 0 , (2)

where the second integral is an Itô-integral, and W de-
notes an m-dimensional Wiener process (or Brownian mo-
tion) given on the probability space (Ω,F , P ) with a filtra-
tion (Ft)t≥t0 . The solution is a stochastic process depend-
ing on the time t and on the random sample ω. Typical
paths are nowhere differentiable. Using techniques from
the theory of DAEs as well as of the theory of stochas-
tic differential equations (SDEs) one derives existence and
uniqueness for the solutions as well as convergence results
for certain drift-implicit methods for systems with DAE-
index 1.

II. Numerical Methods

We discuss stochastic analogues of the two-step back-
ward differentiation formula (BDF2) and the trapezoidal
rule, where only the increments of the driving Wiener pro-
cess are used to discretize the diffusion part. The trape-
zoidal rule is given by

A
q(X`) − q(X`−1)

h`
+

1

2
(f(X`, t`) + f(X`−1, t`−1))

+

m∑
r=1

gr(X`−1, t`−1)
∆W `

r

h`
= 0, (3)

` = 1, . . . , N , whereas the BDF2 has the form

A

∑
2

j=0
α`,j q(X`−j)

h`
+ β`,0f(X`, t`)

+

2∑
j=1

γ`,j

m∑
r=1

gr(X`−j , t`−j)
∆W `−j

r

h`
= 0, (4)

` = 2, . . . , N . Here, X` denotes the approximation to
X(t`), h` = t` − t`−1, and ∆W `

r = Wr(t`) − Wr(t`−1) ∼
N(0, h`) on the grid 0 = t0 < t1 < . . . < tN = T . The
coefficients α`,j , β`,0, γ`,j actually depend on the step-size
ratio κ` = h`/h`−1 and have to satisfy consistency condi-
tions of order one and two (see [3]).

In general, numerical schemes that include only infor-
mation on the increments of the Wiener process have an
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asymptotic order of strong convergence of 1/2 , i.e.

max
`=1,...,N

(E|X(t`) − X`|
2)1/2 ≤ c · h1/2,

where h := max`=1,...,N h`. (For additive noise the order
may be 1.) However, when the noise is small, the error
behavior is much better. In fact, the errors are dominated
by the deterministic terms as long as the step-size is large
enough [4]. In more detail, the error of the given methods
is bounded by O(h2 + εh + ε2h1/2), when ε is used to
measure the smallness of the noise (gr(x, t)=εĝr(x, t), r =
1, . . . , m, ε�1).

In [5] the authors presented a stepsize control for the
drift-implicit Euler-scheme in the case of small noise that
leads to adaptive step-size sequences that are uniform for
all paths, see also [1], [2]. In this talk we present an error
estimate and, based on this, a step-size control for the
methods with deterministic order 2 given above.

III. Numerical results

We illustrate the potential of the step-size control strat-
egy by simulation results for a nonlinear scalar test-SDE
with known explicit solution. In Figure 1 we plotted the
tolerance (4) and the mean-square norm of the errors for
adaptively chosen (+) and constant (×) stepsizes for 100
computed paths vs. the number of steps in logarithmic
scale. Lines with slopes −2 and −0.5 are provided to en-
able comparisons with convergence of order 2 or 1/2. We
observe order 2 behavior up to accuracies of 10−2.
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Fig. 1. Tolerance and accuracy versus steps for a test-SDE.

Further, we consider a model of an inverter circuit (see
Fig. 2) with a mosfet-transistor under the influence of
thermal noise. The mosfet is modelled as a current source
from source to drain that is controlled by the nodal po-
tentials at gate, source and drain. The thermal noise of
the resistor and of the mosfet is modelled by additional
white noise current sources that are shunt in parallel to
the original, noise-free elements. To make the effect of
the noise more visible we scaled the noise intensities by a
factor of 1000. For the simulation we used the BDF2 with
adaptively chosen stepsizes using the information of 100
simultaneously computed paths.

In Figure 3 we plotted the input voltage Uin and values
of the output voltage e1 versus time. The red lines show
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Fig. 2. Thermal noise sources in a mosfet inverter circuit.

the values of two different solution paths, the blue line
gives the mean of 100 paths and the black lines the 3σ-
confidence interval for the output voltage e1. Moreover,
the applied stepsizes, suitably scaled, are shown by means
of single crosses.

Using the information of an ensemble of simultaneously
computed solution paths smoothes the step-size sequence
and reduces the number of rejected steps considerably,
compared to the simulation of a single path.
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Fig. 3. Simulation results for the noisy inverter circuit.
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