
Both CM and CS 1

Efficient Solution of Large Linear Systems
in Model Reduction for VSLI Circuits

Alfredo Remón, Enrique S. Quintana-Ort́ı
Depto. de Ingenieŕıa y Ciencia de Computadores, Universidad Jaume I

12.071-Castellón, Spain

{remon,quintana}@icc.uji.es

Abstract—We investigate the solution of linear systems

that appear when model reduction via system balancing is

applied in circuit simulation and design. In particular, we

show how the properties and/or structure of the coefficient

matrices allow the development and use of efficient (fast)

parallel algorithms for the solution of the corresponding

linear systems. Results are reported on a two-way Intel

Xeon multiprocessor.

Keywords—Large linear systems, model order re-

duction, system balancing, VLSI circuits, Lyapunov

equations, LR-ADI iteration, multithreaded BLAS,

multicore and SMP architectures.

I. Introduction

We consider linear dynamical systems, given in gener-
alized state-space form by

Eẋ(t) = Ax(t) + Bu(t), t > 0,
y(t) = Cx(t) + Du(t), t ≥ 0,

(1)

where A,E ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m,
and x(0) = x0 ∈ Rn is the initial state. Here, n is the
order of the system and the associated transfer function
matrix (TFM) is G(s) = C(sE −A)−1B + D. In model
order reduction (MOR) we are interested in finding

Ê ˙̂x(t) = Âx̂(t) + B̂u(t), t > 0
ŷ(t) = Ĉx̂(t) + D̂u(t), t ≥ 0,

(2)

of order r, with r � n, and TFM
Ĝ(s) = Ĉ(sÊ − Â)−1B̂ + D̂ which “approximates” G(s).

Systems of the form (1) arise in circuit simulation and
design (CSD) [1]. When modeling the interconnect or the
pin package of VLSI circuits, the order is often too large
to allow simulation in an adequate time or to even tackle
the model using differential equation solvers. Therefore,
MOR is frequently used to replace the circuit model by
one of much smaller order. Here we will only consider
methods based on system balancing, which are specially
appealing in that they provide global computable error
bounds and can preserve the system properties. For a
survey of different MOR techniques, see [2].

There exist various methods for MOR which aim at
balancing the system [2]. The core computation in all
these is the solution of the Lyapunov equations

AT WoE + ET WoA = BBT ,
AT WcE + ET WcA = CT C,

(3)

for Cholesky or full rank factors of Wo,Wc ∈ Rn×n. Lya-
punov solvers based on the LR-ADI iteration [3] are spe-
cially efficient when both A and E are sparse, and the
constant terms in (3) are of low numerical rank (a usual
case in CSD). The LR-ADI method requires, at each it-
eration j, the solution of a linear system of the form

Uj+1 :=
(
Â + γjIn

)−1

Uj , (4)

where and {γj}∞j=0 are scalars with periodicity ts, and
{Uj}∞j=0 have a small number of columns. Therefore,
the linear systems in iterations j and j + ts share the
same coefficient matrix and the use of direct solvers is
highly recommendable. For further details on the LR-
ADI iteration and its parallelization see, respectively, [3]
and http://www.pscom.uji.es/software.html.

The coefficient matrices of the linear systems (4) asso-
ciated with CSD models often present a moderate band-
width (or can be transformed to that form), allowing the
use of band solvers in LAPACK. Here we describe how
specialized band solvers can be designed and utilized to
efficiently exploit the properties and structure of these
matrices. In particular, we propose a modified scheme
for storing band matrices that yields a significant gain in
the speed of the factorization stage, at the expense of a
slightly larger work space. Also, for unsymmetric prob-
lems, the negative definiteness of the coefficient matri-
ces may allow to obviate pivoting for stability during the
factorization, resulting in higher performance; this then
enables the introduction of BLAS-3 during the forward-
substitution stage. Combined with a multithreaded imple-
mentation of BLAS, the codes allow the parallel solution
of the linear systems on current multicore and SMP archi-
tectures. Preliminary experimental results on a two-way
Intel Xeon multiprocessor provide evidence in support.

II. Efficient Solvers for Band Linear Systems

In this section we first describe the codes in LAPACK
for the factorization of band matrices. We then propose
a technique with the potential to attain higher efficiency.
To illustrate this, we employ the routine in LAPACK for
the Cholesky factorization of a band matrix, xpbtrf.

Given a s.p.d. matrix Â ∈ Rn×n with bandwidth kd,
routine xpbtrf computes a lower (or upper) triangular
factor L ∈ Rn×n, of bandwidth kd, such that Â = LLT .
Upon completion, L overwrites the lower triangular part



Both CM and CS 2
of Â. Now, let Â be partitioned as

(
ATL ATR

ABL ABR

)
=


A00 A01 A02

A10 A11 A12 A13

A20 A21 A22 A23 A24

A31 A32 A33 A34

A42 A43 A44

 ,

(5)
where ATL, A00 ∈ Rk×k, A11, A33 ∈ Rnb×nb , and
A22 ∈ Rkl−nb×kl−nb . Here, the block size nb is chosen
for optimal performance. At a given iteration in xpbtrf,
ATL has been overwritten with the corresponding block
of L, and ABL and ABR have been updated conformally.
The following operations are then performed during the
current iteration:

1.1) Factorize A11 = L11LT
11, (xpotf2)

2.1) A21 (= L21) := A21L−T
11 , (xtrsm)

2.2) tril(A22) := tril(A22)− L21LT
21, (xsyrk)

Wk := triu(A31),

3.1) Wk := WkL−T
11 , (xtrsm)

3.2) A32 := A32 −WkLT
21, (xgemm)

3.3) tril(A33) := tril(A33)−WkW T
k , (xsyrk)

triu(A31) (= L31) := Wk.

(6)
Here triu(Aij) and tril(Aij) denote, respectively, the
upper and lower triangular part of Aij , and the ex-
pressions are annotated with the LAPACK/BLAS rou-
tines that are employed for their computation. Provided
nb � kd, a major part of the floating-point arithmetic
operations (flops) are performed in terms of the BLAS-3
computation in 2.2), and high performance is to be ex-
pected if a tuned implementation of xsyrk is utilized. On
the other hand, no attempt is made to exploit the upper
triangular structure of A31, L31 in 3.1)–3.3) as there is no
appropriate kernel in BLAS. The packed storage scheme
utilized for band matrices, and the use of BLAS kernels in
3.1)–3.3), results in the copies to/from the work space Wk.

The operations involving small blocks during the factor-
ization stage in general do not attain high performance.
While theoretically the influence of this part on the over-
all process should be small, practice has shown us oth-
erwise. In some experiments with s.p.d. matrices, the
optimal block size nb determines that as much as 30–40%
of the time is spent in these small operations; the ratio is
even higher when multiple processors and a multithreaded
BLAS are employed.

In order to overcome this problem, we propose to pad
the data structure containing Â with nb rows of zeros in
the bottom. In this way, the update of A31 can be com-
bined with that of A21 in a single call to xtrsm, and
a single call to xsyrk suffices to update A22, A32, and
A33. This strategy requires space for an extra nb × n
block which, provided nb � kd, is small. but no copies
between/from Wk are then needed. The experimental re-
sults in the next section illustrate the practical benefits.

A similar strategy is applicable to the LU factorization
code. Moreover, as preliminary experiments show, the co-
efficient matrices arising in CSD often do not require piv-
oting during the factorization so that, by utilizing a spe-
cially modification of LAPACK routine xgbtrf, higher
performance can be expected. Also, in such a case BLAS-
3 can be introduced in the forward substitution stage.

Example dpbtrf dpbtrf dpbtrf+MS
(1 proc.) (2 proc.) (2 proc.)

1 0.31 0.68 0.19
2 9.96 7.10 5.80
3 75.87 47.20 43.22

TABLE I

Execution time (sec.) of the factorization routines on the CSD examples.

III. Experimental Results

The following experiments were performed using ieee
double-precision (real) arithmetic on a parallel plat-
form consisting of 2 Intel Xeon processors@2.4 GHz
with 512 KB of L2 cache and 1 GB of RAM. The
multithreaded BLAS implementation in GotoBLAS 1.00
was employed (http://www.tacc.utexas.edu). We
consider three different examples from the Oberwol-
fach MOR benchmark collection (http://www.imtek.
uni-freiburg.de/simulation/benchmark) correspond-
ing to CSD models. The matrix (E−1A) in these sys-
tems is symmetric negative definite allowing the use of
the Cholesky factorization during the factorization of the
linear systems. MATLAB routine symrcm was used to
reduce the bandwidth in Examples 2 and 3. A brief de-
scription of the examples follows:
Example 1. This is a model of a µthruster array with
n=11445 states and bandwidth kd=231.
Example 2. This model is used for 3D simulation of con-
vective thermal flow in a chip with n=20082 and kd=1226.
Example 3. This is a µmachined metal oxide gas sensor
array with n=66917 and kd=1957.
Although sparse (parallel) linear system solvers as Su-
perLU or MUMPS could be used, in some of these ex-
amples this leads to explosive fill-in so that memory is
rapidly exhausted and the factorization is not possible
and/or keeping the factors during the LR-ADI iteration
becomes infeasible.

Table I reports the execution time required for the fac-
torization stage of the matrices in the CSD examples.
Algorithm xpbtrf refers to the original (double preci-
sion) code in LAPACK; dpbtrf+MS includes the mod-
ified storage scheme described at the end of the previ-
ous section. Using the two processors of the machine, the
speed-up achieved by dpbtrf+MS w.r.t. dpbtrf is 3.51,
1.22, and 1.09. The high acceleration of the first case is
due to the performance degradation that appears when
multithreaded BLAS is used to factorize/update small-
scale problems in dpbtrf (A11, A21, and A33).

We expect similar improvements by applying the same
technique to the solution of general band linear systems,
which will surely be larger in case no pivoting is necessary.

References

[1] C.-K. Cheng, J. Lillis, S. Lin, and N.H. Chang, Interconnect
Analysis and Synthesis, John Wiley & Sons, NY, 2000.

[2] A.C. Antoulas, Lectures on the Approximation of Large-Scale
Dynamical Systems, SIAM Pub., Philadelphia, PA, 2005.

[3] T. Penzl, “A cyclic low rank Smith method for large sparse
Lyapunov equations,” SIAM J. Sci. Comput., vol. 21, no. 4,
pp. 1401–1418, 2000.


