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Abstract—In this study, we deal with converting 1-

D Maxwell equation to a linear system by using the

MOESP(Multivariable Output Error State Space) sub-

space system identification method. Source is applied to a

selected spatial grid point and another spatial grid point is

selected as an output i. We collect output data from this

spatial point with FDTD algorithm. With this output and

input data, required data matrices are built and a SISO

(Single Input Single Output) linear system is estimated by

MOESP algorithm for 1-D Maxwell equations. The order

of the estimated system mainly depends on the structure

of the data matrices.
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I. Introduction

In general, system identification methods mainly devel-
oped in the area of automatic control to determine the
best (in the sense of input-output relationship) model
from a given observed input-output data set. In this
study, the Maxwell equation is converted into a set of
state-space equations by using MOESP algorithm, which
is a member of subspace system identifacation family of
algorithms. This idea may be useful when simulation of
the VLSI interconnections are considered. To computa-
tion of the effects VLSI interconnection is mainly based
on the solution of Maxwell equations on chip geometries.
The RLC parasitic circuits are realized with the solution
of Maxwell equations. Finally, the model order reduc-
tion algorithms are implemented to reduce the dimension
of the linear subsystem of this RLC circuits [1]. In this
study, 1-D Maxwell equation is directly converted into
a small order SISO system without using any model re-
duction algorithm. Therefore it may be useful to find an
appropriate reduction order of the model order reduction
process. Most important criterion for succesfull conver-
tion is the input-output data set, which produced from
1-D Maxwell equation with the FDTD method.

The remaining of the paper, organized as follows. In
second section, the problem is briefly explained. In third
section, the methodology and the MOESP algorithm are
introduced. The fourth section contains some numerical
results and discussions and finally the last section presents
conclusions and future works.

II. Definition of the Problem

Consider an one-dimensional space where there are only
variations in the x dimension. Assume that the electric
field has only a z component. With Faraday and Ampere’s
law we could write 1-D Maxwell equations as,
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The source function is applied on to the 0th node of
the computational domain and data is collected as the
electrical field of 50th node.

After discretization, FDTD algorithm is implemented
to obtain the input data uk and output data yk.

Two Hankel matrices could be determined in terms of
uk and yk to generalize the structure. Here the structure
of the U0|k−1 matrix is showed. The other matrices from
the uk and yk could be produced similarly.
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where k is greater than the order of the system(n), p is

the number of the outputs of the system, m is the number
of the inputs and finally N is a sufficiently large number
for fixing the Hankel matrix. 0 and k−1 values in Hankel
matrices definitions are used for determining the upper-
left and lower-left elements respectivly.

LQ decomposition, which is the dual of the QR decom-
position, is used to make the upper-right block of the data
matrix a zero matrix. LQ decomposition of a data matrix
can be given as,
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=
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The actual computation of LQ decomposition is per-
formed by taking transpose of the QR decomposition of
the data matrix [2].

III. MOESP Algorithm

LQ decomposition and the SVD are employed in the
MOESP algorithm [3]. The algorithm of the MOESP is
listed below.
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1: Compute the LQ decomposition of (3).
2: Compute the SVD of the L22 as,

L22 = [U1U2]

[

Σ1 0
0 0

] [

V T
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2

]

= U1Σ1V
T
1

and determine the order of the system n = dim(Σ1)
from the non-zero singular values and define the ex-
tended observability matrix of the system as Ok =

U1Σ
1/2

1
.

3: Obtain C and A from the Ok.
4: Estimate B and D.

After obtaining the A, B, C and D matrices we can
represent the 1-D Maxwell equation as a linear system,

ẋ = Ax + Bu

y = Cx + Du (4)

IV. Numerical Examples

In experiments, it is observed that the accuracy of the
estimated model and selection of the true order for the
system depends on the information that data matrices
contain. For example if u(t) = cos(0.1t) the order of the
estimated system could be selected as 2 which can be seen
from the singular value distribution that given in Fig. 2.
But, if u(t) selected as a constant source, for example
u(t) = 10, because of the structure of data matrices it is
not possible to find an accurate estimation. To solve this
problem data set can be reduced with a random selection
from original data. After reducing the number of data set
more accurate results are obtained from the algorithm.
This situation is showed in Figs. 3 and 4.
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Fig. 1. Original and estimated outputs(Ez(50)) for u(t)=cos(0.1t)
where estimated system order equals to 2

V. Conclusion and Future Works

In this paper, 1-D Maxwell equation converts into a
SISO linear state-space system with the MOESP algo-
rithm. Some important observations are made from the
numerical experiments. The mathematical properties of
the source function is very important for the accuracy of
the method. For constant source case the rank of the data
matrix is mainly determined by the output data. There-
fore sampling of the data is required for more accurate
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Fig. 2. Singular value distribution of L22 matrix where
u(t)=cos(0.1t)
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Fig. 3. Original and Estimated outputs(Ez(50)) with sampled case
where u(t)=10 and estimated system order equals to 6
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Fig. 4. Original and Estimated outputs(Ez(50)) with unsampled
case where u(t)=10 and estimated system order equals to 6

results. But in all cases, estimated output have some nu-
merical distortion. To achieve more accurate result some
optimization techniques (neural networks, genetic algo-
rithms, etc.) can be implemented.

The future works will be focused on the building a rela-
tionship between the determining the order for estimated
system and the properties of data matrices and extending
the method to MIMO (Multiple Input Multiple Output)
cases.
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