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Abstract—
In this paper we present the Trajectory Piecewise Lin-

ear (TPWL) method for differential algebraic equations

(DAE). The TPWL method is based on combining sev-

eral linear reduced models, which are created on a typical

trajectory, to approximate the full nonlinear model.

We discuss how to select of the equlibiria for linearisation

and how we can create a gobal reduced subspace. Then we

study show how to combine the local linearised reduced

systems to create a global TPWL model. Finally, we show

a numerical result of the TPWL method.

I. Introduction

Nowadays a lot of nonlinear circuits which are used in
many fields are a mixture of analogue and digital parts.
The digital parts contain several sub-circuits, that have
the same dynamics and only have different inputs. So sim-
plifying these parts gives a good speed up for the transient
analysis.

To do this we could use methods which are based on
linear or quadratic reduction [1] or other methods, e.g.
proper orthogonal decomposition (POD) [2], but these
methods are mostly developed for weak nonlinear sys-
tems. This makes these methods not so useful in circuit
simulation, which often deals with highly nonlinear cir-
cuits. To overcome this issue, a Trajectory Piecewise Lin-
ear (TPWL) [3] approach for ordinary differential equa-
tions (ODE) was developed. We will show how we can
adapt these method to DAEs.

In the next section we present our TPWL approach for
nonlinear DAEs. In Section III. we show how the method
performs in practice. Finally in Section IV. we draw our
conclusions.

II. Trajectory Piecewise Linear Model Order

Reduction

The idea behind the TPWL method is to linearise the
system several times along a typical trajectory. Then we
use the local linearised systems to create a global reduced
subspace and project each of them into this global reduced
subspace. The final TPWL model is then a weighted sum
of all local linearised reduced systems. In the following
subsections we show how we apply the described steps.

The DAE system where we want to apply the TPWL
method is

d

dt
q(t,x) + j(t,x) + B̃ũ(t) = 0

where q, j : R × R
n → R

n, B ∈ R
n×m and u : R → R

m.

A. Creating the local linearised models

The disadvantage of the standard linearisation methods
is that the we can only trust in the results, if the solutions
stay close to the linearisation tuple (LT) around which
we have created the linearised model. To overcome this
disadvantage the idea is to take several linearised models
to create the TPWL model. Then we can trust in the
results as long as the solution stays close to one of the
LT.

Because we also have to calculate a trajectory of the
system, e.g. via a backward differential formula (BDF)
approach, it is a good idea to include the selection of the
LTs directly in such a solver. We use the following strategy
for selecting new LTs.

We know that we will project the linearised system to
global reduced systems. So we reduce our local system
locally. And then simulate the local linearised addition-
ally to the original system. If the distance between both
solutions is getting too large we set a new LT. So we get
the following procedure to find i + 1-th LT.

1. Set an absolute accuracy factor ε > 0, set i = 1

2. Linearise the system around the i-th LT (xi, ti). So
we get

Ciẋ + Gix + Biu(t) = 0

where Ci = ∂
∂x

q(t,x)
∣

∣

xi,ti
and Gi = ∂

∂x
j(t,x)

∣

∣

xi,ti

Save Ci, Gi and Bi.

3. Reduce the linearised system to dimension r ≪ n

with a linear model reduction method, e.g. ’Poor
Mans’ TBR (PMTBR) [4] or a Krylov approach [5].

Cr
i ẏ + Gr

i y + Br
i u(t) = 0

where Cr
i = P⊤

i CiP , Gr
i = P⊤

i GiPi, Br
i = P⊤

i B with
Pi ∈ R

r×n. y ∈ R
r is the approximation to x with

x ≈ Piy. Save Pi.

4. Simulate the reduced system with y0 = P⊤
i xi and

the original system. If the absolute distance between

the two solutions ||Py−x||
||x|| is bigger than ε then set

the i + 1-th LT to (x, t) and go to step 2.

We continue with this procedure until we have reached
the end of the given trajectory.



B. Creating the global reduced subspace

Now we can construct the global subspace. The idea is
to merge all local reduced subspace to get the global re-
duced subspaces. To do this we create P̃ := [P1, . . . , Pp] ∈
R

n×rp which spans then the union of all local reduced sub-
spaces. From our construction we see that the columns
of P̃ are in general not linear invariant. Therefore we
use a singular value decomposition (SVD) to create the
final global subspace. Then we project each of the local
linearised systems to the global subspace. We use the
following procedure

1. Define P̃ = [P1, . . . , Pp].

2. Calculate the SVD of P̃ . So P̃ = UΣV ⊤ with U =
[u1, . . . , un] ∈ R

n,Σ ∈ R
n×rp and V ∈ R

rp×rp.

3. Define P as [u1, . . . , ur].

4. Create the p local linearised reduced systems given
as Cirẏ + Giry + Biru(t) = 0 with Cir = P⊤CiP ,
Gir = P⊤GiP and Bir = P⊤Bi

C. Creating the TPWL model by weighting

Now we need to combine the local linearised reduced
systems to get the global TPWL model. We do this by a
weighted sum of local models

p
∑

i=1

wiCirẏ +

p
∑

i=1

wiGiry +

p
∑

i=1

wiBiu(t) = 0.

The weights wi represent the influence of the i-th local sys-
tem to the global system. A way of choosing the weights is
to make them distance depending. This means wi is large
if the solution y is close to the i-th LT, because then it is
in the accuracy region of the LT. Is the solution far away
from the i-th LT then the weight has to be small. After
calculating the weights we normalise them to get a con-
vex combination of the local linearised reduced systems,
which is described by the following procedure

1. Given actual state y, actual time t, p LT (xi, ti) and
αy, αt ≥ 0 with αy + αt = 1

2. For i = 1, . . . , p compute di = αy

∥

∥y − P⊤xi

∥

∥ +
αt |t − tli |

3. For i = 1, . . . , p calculate w̃i = e−
diβ

m with m =
mini=0,...,s−1 di, β > 0

4. Normalise the weights:

wi = w̃i

s
with s =

∑s−1

i=0
w̃i

III. Example

Now we want to show how the TPWL method performs
in practice. As a test circuit we have chosen a chain of
inverters, which consists of 100 inverters which are con-
nected in series. The circuit behaves nonlinearly so it
is a good test for the TPWL method. Also we have de-
pendencies between all nodes which is also not an optimal
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Fig. 1. Relative error of the TPWL method for different orders

behaviour for a model reduction process. The DAE which
is describing the dynamics of the circuit has 104 states.
For selecting the LTs we have used the proposed method,
the linear model reduction technique we used is PMTBR.

In Figure 1 on page 2 we see that the relative error is
most of the time lower then the given error bound. For
all orders we have to use the same number of LTs (62),
this comes from the fact that the local systems only need
relatively small subspaces to get the desired accuracy. The
resulting speed up is between 5.4 and 8.3 compared to a
BDF method.

IV. Conclusion

The TPWL method applied to nonlinear DAEs is a
promising technique to reduce the simulation time. It has
several advantages compared to other methods. First of
all we can get a big speed up in simulation time. Next we
can use the well-developed linear model reduction tech-
niques. A TPWL method is also scalable. This means
that by using different linearisation tuple controllers, lin-
ear model reduction techniques and weighting methods,
we can change the method from a fast to a much more
accurate method.
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