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A Field Theoretical Comparison
of FDTD and TLM

Michael Krumpholz, Member, IEEE, Christian Huber, and Peter Russer, Fellow, IEEE

Abstract+ field theoretical derivation of the three-dimensional
TLM method with expanded node and of the three-dimensional
TLM method with asymmetrical condensed node is given. In
the derivation, the Method of Moments is applied to Maxwell’s
equations. The wave amplitudes are related to the tangential
field components at the boundaries of the TLM cell. The same
approach is applied to derive the FDTD method from Maxwell’s
equations. A complete dispersion analysis is given for the two
TLM methods as well as for the FDTD method.

I. INTRODUCTION

sINCE the first publication by Johns and Beurle in 1971 [1],

the transmission line matrix (TLM) method has evolved as
an attractive and widely used method in electromagnetic field

computation. Recently, afield theoretic fclundation of the TLM

method has been given. The two-dimensional TLM method [2]

and the TLM method with symmetrical condensed node [3]
have been derived by applying the Method of Moments [4] to
Maxwell’s equations [5]–[7]. In this paper, the same approach
is applied in the derivation of the expanded TLM node [2] and
the asymmetrical condensed TLM node [2], [8], Furthermore,
a complete dispersion analysis for these TLM methods is
given. To demonstrate the close relationship between TLM and
FDTD, we derive Yee’s FDTD scheme with central difference

approximations [9] by applying the Method of Moments to
Maxwell’s equations. Thus, together with [7], [10], this paper
gives a comparison of the various TLM and FDTD schemes
based on a rigorous derivation from Maxwell’s theory.

In TLM, the electromagnetic field is represented by wave

amplitudes instead of electric and magnetic field components.
The correct mapping between the wave amplitudes and field

components is described by the cell bcwndary mapping [7].

Wave amplitudes are related to transverse electric and mag-

netic field components. Therefore, at first, the introduction

of wave amplitudes in three-dimensional space requires the
introduction of any set of surfaces of reference defining

tangential planes. The transverse electromagnetic field com-
ponents are defined with respect to these tangential planes.
The propagation of the wave pulses is normal to the tangential
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planes. The boundary of an elementary TLM cell is formed by

the surfaces of reference. In each boundary surface separating

two TLM cells, a sampling point for the tangential electric and
magnetic field components is chosen. In the network model of
TLM, in each sampling point, one port is assigned to each

polarization. By this way, we assign an elementary multiport
to each TLM cell. In the literature, this multiport is called the
TLM node. In the following, we use the term TLM cell for the
geometrical object we have defined in the continuous space,
whereas the term TLM node is used for the abstract network
model representing the relations between the wave amplitudes
at the ports associated with the sampling points of a TLM cell.

Due to the discretization, FDrD and TLM exhibit devia-

tions from the linear dispersion behavior. Furthermore also

unphysical or spurious modes may occur. Such unphysical
modes do not converge to solutions of Maxwell’s equations.

These effects impose limitations on the accuracy of field

computation. In this paper, a systematic comparison of the
dispersion behavior and the occurrence of unphysical modes
is given for Yee’s FDTD scheme and the TLM schemes for the

expanded node and for the asymmetrical condensed node. The
dispersion relations have already been calculated for various
FDTD schemes [11], [12] and for some TLM schemes [10],
[13], [14]. We use a general approach for the computation
of the dispersion relations and the discussion of the spu-
rious modes based on the state space representation of the
discretized electromagnetic field [5]–[7], [15]. The dispersion
relations of the FDTD and TLM schemes are calculated from
the solutions of the eigenvalue problem in the field state space.
We distinguish between physical and unphysical eigenvectors
in the field state space. Only physical eigenvectors describe

solutions of the FDTD or TLM scheme which converge to
solutions of Maxwell’s equations for frequencies approaching
zero. The unphysical eigenvectors describe artifacts introduced

by the discretization of Maxwell’s equations.

II. THREE-DIMENSIONALFDTD

The finite-difference time domain (FDTD) method is a
mathematical approach for the solution of partial differential
equations [16]. The partial derivatives are simply replaced by
finite differences. In 1966, Yee has given a FDTD scheme
for the solution of Maxwell equations [9]. In the FDTD

method, space and time are discretized with increments Al
and At, respectively. We derive Yee’s FDTD scheme with
central difference approximations [9] by applying the Method
of Moments to Maxwell’s equations. The field components
are represented by a series of subdomain basis functions.
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As subdomain basis functions, we use pulse functions in where kE~m, ~ and kH[vn,,, with p = x, y, z are constant

space and time. The field expansions of the magnetic field expansion coefficients. The indices 1, m, n, and k are the

components are shifted by half a discretization interval in discrete space and time indices related to the space and time

space and time with respect to the field expansions of the coordinates via x = lAx, y = mAy, z = TLAZ, and t= AAt,

electric field components. As test functions, according to where Ax, Ay, Az, and At represent the space discretization

Galerkin’s method [4], we use pulse functions in space and interval in x-, y-, z-direction and the time discretization

time, too. For simplicity, we restrict our considerations to the interval, respectively. The function hm (x) is defined by

free space.
h.,,(z) = h (; -

A. The Derivation of FDTD Using the Method of Moments

Maxwell’s equations
with the rectangular pulse function

VxH=~~ (1)

{

1 for Izl

Zoc a h(~) = 1/2 for lx]

ZO 8H o
VXE=– —Y

for 1x1
(2)

[r),) (lo)

< 1/2
= 1/2. (11)

> 1/2

c Ot
We insert the field expansions in Maxwell’s equations and

with the wave propagation velocity c = 1/- and the sample the equations using pulse functions as test functions.
wave impedance for the free space ZO = ~m may be We calculate
written in Cartesian components as

8Hz i?HY _ 1 L3EZ.—
19y – az – Zi)c at

8HZ 8HZ 1 8EY—— —
82 (3X = Zoc i%

t?HY 8Hz 1 3EZ—= ——
ax – ay Zoc &

We expand the field components in

E. (d, t) = E kE&~/2, m,n
k,l, m, n=–m

. hk(t)h1+1,2(z)hr, (y)hn(z)
+Cc

EY (5, t) = x ‘E[m+l/2, n
k,l, m,n=-cc

. hk(t)h1(x)hm+1,2 (g)hn(z)
+Cc

E; (:, t) = x kEc.n.n+~/2
k,l, m,n=–w

. h~(t)hz(x)hm(y) hn+l/2(,z)

k,l>m, n=–m

“ h~+l/z(~)hz(x)~rn+l/z(y)hn+l/2(~)
+Cc

“ h~+l/2(t)ht+1/2 (x)hm(y)hn+l/2(~)

k,l, m,n=–cc

“ hk+l/2(~)h1+l/2 ($)hm+l/z(y)hn(~)

(3) /

+Cc

hm(z)hmr (z) dz = bn,,~, Ax (12)
—cc

(4) where brrz, n~t represents the Kronecker symbol

(5) 6
{

1 for m = vL’

‘“m’ = O for 71L # m’”

(b) Using

/

+Cc

(7) 6(Z – q)f(z) d$ = f(xo)
—m

(8) and

(13)

(14)

tih(z)
— = 8(Z+ 1/2) – 6(X – 1/2)

ax
(15)

yields

/

+W ahm’+1/2(x)dx = ~rrh ,nI – ~rn m’+1”
h,($) ax (16)

—cc

As an example, we consider (3). SampIing dEZ/i% yields

+Cc

—— x k’E;+~/2,m’, n , 61,11 6n,, ml 6,,,,,/

k’,l’, m’, w’=-w

. A,cAy Az(&, k+l – ~,v, h)

– AXAY Az(k+lE:+l/2, m,. – w%+l/2,7n,7J. (17).

Sampling the two other terms of (3) in the same way, we obtain

AZ At(k+l/2H~+l/~,m+~/2,n – k+l/2’Hf+l/2, m-l/2, n)

– AY At(w/2H:+~/2, n,, ,L~l/2 – ~h~/2Hlz+1/2,~,~–1/2 )

Ay ~Z
– ~ (k+lE:+l/2, nz,. – ~E?+l/2, rn>n). (18)

Choosing

(9) Ax= Ay==Az=Al (19)
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and proceeding in the same way as above with all components

of Maxwell’s equations yields Yee’s FDTD scheme with

central difference approximations [9]

+ k+l/2H&/z,m,n+l/2 – ‘+1/2 H[–l/2, m, n+l/2 )

k+l/2H~m+l/2, n+l/2 – k–~/2H~m+l/2,n+l/2

= & (kE[nt+,,z,.+,- kE[m+,,2,.
+ kE~m, n+l/2 – kE~m+l, n+l/2 )

+ kE;+~,m,n+l/2 – kE~ rn, n+~fz )

k+~/2H[+l/2,7n+I/Z, n — k–~/2Hf+l/2, ..+1/2, n

bining the six field components of the FDTD cell with the

discrete coordinates (1, m, n) at the discrete time coordinate

k. We introduce a system of orthonormal space domain basis
vectors 11,m, n) in the Hilbert space lim. To each node with

the discrete coordinates (1, m, n), a basis vector 11,m,, n)

is assigned. In the Hilbert space ‘lit, the basis vector Ik)
corresponds to the discrete time coordinate k. Due to the
summation of k, 1, m and n, the field vector IF) combines
all electric and magnetic field components of the complete
FDTD mesh at all discrete time points k. Thus the complete
time evolution of the field in four-dimensional space-time may
be represented by a single vector in ‘HF.

The orthonormal basis vectors of Mm B fit are given by

the ket-vectors Ik; 1, m, n). The bra-vector (k; 1, m, n,l is
the Hermitian conjugate of Ik; 1, m, n). The orthogonality

relations are given by

(h; 11, ml, ~1 Ikz; 12, ~z, 7J2)

‘~kl,k~sl~,l~~ml,m~~n~.n~. (23)

To describe a shift of the field components in space and

time, we define the half shift operators Xh and its Hermitian

conjugate Xi by

xh Ik; 1, m, n) = Ik; i + 1/2, ‘m, n)

xl [k; 1, m, ‘n) =\k; 1– 1/2, ‘m, n) (24)

and in the same way, the shift operators Yh, Y~, Z~, and Z~
for the spatial coordinates m and n as well as the half time

shift operators T~ and T~ for the time coordinate k. Using

where we have introduced the stability factor s = cAt/f.M.
To write these discretized field equations in a more compact

form, we use the state space representation for the electromag-

netic field presented in [5]–[7], [15]. We introduce the fiel/1 the Hilbert space representation, we may represent (20) by the

state space fiF given by the product space of three vectors operator equation

spaces

and define the field vector IF) as a vector in ?tF with

~ h[E., Ey, Ez, HI.,

used

IF) =
k,l, m,n=–m

zo~y, zoH.]fm, n Ih ~, m, ~). (22)

The six-dimensional complex vector space C6 is the space
of the vector k[EZ, Eg, EZ, ZOH~, ZOHY, zoH~]~m, ~ cOm-

M IF)

(26), shown at the bottom

the abbreviations

d. = xl

dy = Y~

=0 (25)

of the page, where we have

– Xh

- yh

dZ=z~–zh

dt =T~ –Th. (27)

M= (26)



1938 IEEE Transactions oNMIcRowAvE THEoRYAND Techniques. voL.43, No. 8, AUGUST 1995

B. The Dispersion Analysis

The dispersion characteristics of FDTD have already been
investigated extensively in [10]–[ 12] so that we only sum-
marize the results which are necessary for the comparison of
FDTD and TLM. We introduce a set of basis vectors IO) of ‘lit

(28)

k=–cc

where the normalized frequency fl is related to the frequency
f by 0 = 2xAt f = wAt. Calculating the inner product of
IF) and Ifl) yields the frequency domain representation of the
field state [1O], [14]. Forming the inner product of (fl I and
(25) and considering

~h 10; i, m, n) = e ‘Jn/2 If); 1, ‘m, n) (29)

we obtain

~(e-m, x },, Y~, z~)p?(fl))m = o (30)

where we have introduced the vector

pqfl))m =,(!2 IF)

= ~ k[Ez, E,, E., Z,Hz,
l,m, nz–m

ZOHY, ZoH,]~m, ne ‘~koll, ~, n). (31)

The subscripts t and m of the vectors indicate that the vectors
are an element of the Hilbert space I-tt and fin, respectively.
If it is obvious to which space the vectors are belonging,
these indices will be omitted. The procedure corresponds
to a separation of variables, which is justified because IQ)
represents a maximal orthonormal set for the Hilbert space Ht
[17].

We introduce the plane wave basis vectors

lxn,o= y e’(x’+qm+cn) 11,m, n) (32)
l,m, n=–cc

with the normalized wave vector components x = Al k=, q =
Al kv,and ~ = Al k=. The wave vector k has the x-, y-, and

z-components km, k~, and k,. The basis vectors Ix, q, ~) form
a complete basis in ?im satisfying the completeness relation

12TL2V2°(i Xdqdflx, 7-), () (x, ?-/,.fI = 1. (33)

Therefore (22) yields

“ e-’kolx n 0 (34)

where we have introduced the vector of the plane wave
amplitudes

F(X,‘r), &) = ~ k[E., E,, E., zoHz,
l,m, n=–m

ZOHY, ZOH~]fm,n e-’(~z+~m’+fn) . (35)

We restrict our investigations to electromagnetic fields com-
posed of plane waves. In this case, we have

lF(Q))n = F(x, q, f)e-’ko Ix, q, ~) (36)

and (30) yields

~(e-2W2, x
h, Yh> -zh)~(x, n, t) IX>n, ~) = 0. (37)

We calculate the inner product of (x, q, fl and (37). Consid-

ering

X~ lx, ~, f) = e-~Yi2 lx, q, ~)

Y~ lx, q, ~) = e-~~j2 lx, q, ~)

zh lx, m O =e “<’2 lx ~) o (38)

we obtain the representation of (37) in wave vector domain

~(e-W, e–@, ~– Vi/2, e–Jtj2) F(X, ~, ~) = O. (39)

Equation (39) has nontrivial solutions if

det M(e-Jn/2, e-Jx/2, e-Jq/2, e-J~/2) = O. (40)

The solutions of (40) are the eigenvalues ~, = e~ob given by

Al,2=cl+~~

A3,4=cl–~~

A5,6=1 (41)

with

cl = S2[COS(~)+ Cos (q) + Cos (<) – 3] + 1. (42)

Each of the six eigenvalues ~, has one eigenvector l?, (x, q, ~).
The eigenvectors corresponding to the eigenvalues Al, A2, A3,
and ~L describe propagating solutions of the FDTD scheme.
As ~5, G = 1 implies fl = O, the corresponding eigenvectors
describe stationary solutions representing the electro- and
magnetostatic case.

For the eigenvectors describing propagating solutions of the
FDTD scheme, we obtain the dispersion relation

sin2 (fl/2) = s2[(sin2 (X/2)+ sin2 (77/2) + sin2 ($/2)]. (43)

To compare three-dimensional FDTD with three-dimensional
TLM, we choose s = 1/2. For this case, we calculate the
cutoff frequencies. The cutoff frequency is defined as the

highest frequency for which a solution of the dispersion
relation exists. The cutoff frequency is the highest frequency
for which the propagation of a wave with an arbitrary spatial

distribution in the FDTD mesh is still possible. For example,

for wave propagation along the z-axis and in (1, O, O) direction,

respectively, we have q = O and < z O yielding

sin (0/2) s ~ and f.= & (44)

for the cutoff frequency f..For wave propagation along the
space diagonal with respect to the mesh and in (1, 1, 1)
direction, respectively, we have x = q = ( yielding

sin (0/2) < ~ and f = ~
2

c
3At “

(45)
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Fig. 1. The three-dimensional expanded TLM node.

The lowest cutoff frequency determines the maximum band-

width with respect to frequency. Thus the maximum bandwidth

F of the FDTD method is given by –1/(6At) < ~ < l/(6At)

and F = l/(3At), respectively.

III. THE TLM METHOD WITH EXPANDEDNODE

The expanded TLM node (Fig. 1) is composed of three
two-dimensional TLM shunt nodes and three two-dimensional
TLM series nodes [2]. The scattering at the shunt nodes is
shifted by half a discretization interval in time with respect to
the scattering at the series nodes. The scattering of the wave
amplitudes at the expanded TLM node may be described by

two 12 x 12-matrices combining the scattering matrices of the
three shunt nodes in one 12 x 12-matrix and the scattering
matrices of the three series nodes in the other 12 x 12-
matrix. The field expansions of the electric and magnetic
field components are similar to the field expansions for the
derivation of the FDTD method. Like in FDTD, the field
expansions of the magnetic field components are shifted by
half a discretization interval in space and time with respect to

the field expansions of the electric field components. Thus
each of the six linearly independent electric and magnetic
field components per three-dimensional TLM cell is defined
at the center of one of the six two-dimensional TLM nodes of
one expanded node. In the following, we derive the scattering
matrix of one shunt node of the expanded TLM node. The
other five scattering matrices may be derived in a similar way.

A. Field Theoretic Derivation

We expand the field components in

E%(7, t) = E ~E&l/2, m,n 9k (t)
k,l, m,n=–cc

“ h+l/2(~)9Tn(Y)9n(~)

q(z, t) = E kE~m+~/2, n 9k (t)
k,l, m,n=–cc

“ 9d~)Ln+l/2(v)9n(~)
+Cc

E.(?, t) = x ~E~m,n+-lf29~ (t)

k,l, m,n=–m

“ gl(x)9m(Y)L+l/2(~)

+Co

H. (i?, t) = x k+l/zH; m+l/2,n+l/2
k,l, m,n=–cc

“ gk+l/2(~)hl(Z)%n+ l/2(y) %+l/2(z)

k,l, m,n=–cc

“ .gk+l/2(~)9t+l/2 (Z)hm(~)9n+l/2(2)

Hz(;) t) = ? k+~/zHf+l/z, 7n+I/2,n
k,l, m,n=–m

“ gk+l/2(~)gt+l/2 (~)gm+l/2(v)~n(~) (46)

The basis functions gm are given by

‘m(’)‘9(G-m) (47)

where the triangle function g(x)

The use of the functions gm (z)

is defined by

for [xl <1
for Izl ~ 1“

(48)

provides a piecewise linear
approximation [4] of the exact solution of Maxwell’s equations
with respect to the coordinate ~, whereas the use of the pnlse
functions h~ (z’) provides a step approximation [4] of the
exact solution with respect to the coordinate z’.

For the derivation of the two-dimensional shunt node with

the center at the discrete space point (1, m, n + 1/2) (see
Fig. 1), we insert the field expansions in Maxwell eqpa-

tions and sample the equations in the cell boundaries using
delta functions in space and time. Sampling (5) in the cell
boundaries means sampling it at (1+ 1/4, m, n + 1/2), (/–

1/4, m, n+l/2), (1, m+l/4, n+l/2), and (1, m–1/4, n+
1/2) at the discrete time points k+ 1/4 and k+3/4. We choose
Al according to (19). Using the integrals

/

+Cc
6[z – (m+ c)Az]h~/ (x) dz

—CO
= i$m,m! (49)

/

+Cc
6(z – mlk)g~r (a) dz

—cc
= 15m,~, (50)

/

+’X
6[z – (m+ l/4) Ax]g~ (z) dx

—cc

= +(s~%m’ + fi~+l>~’) (51)

/

+m
cf[z – (m+ 3/4) Az]gm, (z) dx

—cc

= i(~m)m’ + 3 ~m+l>m’) (52)
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for c = – 1/4, O, 1/4, we obtain eight discretized field

equations. Adding these discretized field equations yields

12 ~+lEJ~)~+l/2 + k+lE;+l, rn, .+112

+ k+lE:_l,m,n+l/z + k+lE: ~+1, n+l/2

+ ~+lE~m–l,n+llz – 12 @~ rn,n+112

—kE~+l,m,m+l[2 — kE~–l,m,n+~/2

—
kE~m+l, n+l/2 – kE:m–l, n+l/2

= ZTII (k+3/2H~+l/2, m, n+l/2

+ G k+l/2H?+l/2, m,n+l/2

+ k–1/2%!+l/2, ln, n+l/2 )

— ZVl(k+3/2H?–l/2, . . .. n+l/2

+ G k+l/2H:–l/2, n,, n+l/2

+ k-1/2 q-l/2, m, n+l/2 )

—
ZT/1 (k+3/zH~m+l/z, .+1/2

+ 6 L+112H~m+112, .+1/2

+ k–1/2H?m+l/2, n+l/2)

+ ZIII (k+3/2H:m–1/2,~+1/2

and the CBM values of the z- and y-component of the

magnetic field

~+~/2Hl!+l/4,m, n+l/2

= *(3 k+~/2H&/2, ~, n+ I/2 + k+V2H?-~/2, m n+I/2)

Furthermore, we introduce the CBM values of the field com-
ponents with respect to time as

+ G k+I/2H~ rr–I/2, n+ I/2 with L = z, y. Inserting (56)–(58) in (54) yields

+ k_l/@~ ~_I/z, ,,+1/2) (54)

where we have introduced

2zoAtc

‘1 = ZA1
(55)

with the arbitra~ impedance Z.
The correct mapping between the wave amplitudes and field

components is described by the cell boundary mapping [7].
The cell boundary mapping relates the wave amplitudes with
the tangential electric and magnetic field components in the
boundary surfaces separating the six two-dimensional TLM
nodes of one expanded node. For the field components at the
cell boundaries, we introduce the CBM values (cell boundary
mean values [5] ) of the electric and magnetic field components.
The CBM value of a field component is defined as the value
of the series expansion for this field component at the cell
boundaty. We introduce the CBM values of the z-component
of the electric field

?%/4, ?I’l, n+lfz In order to describe the complete discretized mesh-state, we

= ~(kEf+~,m,n+~/2 +_ 3 kE<m, n+l/2) make use of the Hilbert space representation of the TLM

kEL1/4, m, n+l/2
method [151 and introduce the field state space I-iw given by

= +(r@f–l,m>n+l/2+ 3kE[m,n+1/2) %W’ = C12 B Km @ 7it. (60)

kE~ m+I/4, n+ I/2

= +(kE&+l, ~+1,2 + skE; m,n+1,2)
The electric field vector IFE1) combines all CBM values of
the electric field components at the three shunt nodes of all
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expanded TLM nodes of the three-dimensional mesh at all the vector IFM2) by

time sampling points kAt. It is given by

+-cc

b
k,l, m,n=–cc

Analogously, IFM1), defined by

+Cc

IFM1) =Z E
k,t, rn, n=-cc

k+3/4H;–1/4,~_l/2, ~

W314Hf+l/4,m–~/2, n

k+3/4H?–~/4, m,n+~/2

k+3/4H~+1/4, ~, ~+1/2

k+3/4Hf&1/4,n+ 1/2

k+3/4H~m+1/4, n+1/2

k+3/4H:+1/2, ~–I/4, n

k+3/4H~+1/2, ~+1/4, ~

k+3/4H~+1/2, ~ ~_l/4

1
.,.,,

k+3/4H&/2, m, n+ I/4

k+3/4H&l/2, n_ I/4

k+3/4H&1/2, ~+1/4

Ik; 1, m, n).

k; 1, m, n)

(61)

+Cn

>
F~2) =Z :

k,l, m,n=–w

k+~14H;+~/4,rn–~/2, n

k+~/4H?+3/4, m–I/2, n

k+~/4H~+~/4, m, n+ I/2

k+~/4H?+~/4, m,n+~/2

k+~/4H~m–3/4, n+~/2

k+~/4H~m_1/4, n+1/2

k+l/4H&_1/2, ~_3/4, ~

k+l/4~;+~f2, m_lf4, n

Ik; 1, m, n). (64)

Rewriting (59) using the Hilbert space representation yields

[o, O, 1, 1,1, 1,0,0,0,0,0, 0](1 -T~)lFEl)

= [0, o, -1, 1, 1, -1,0,0,0,0,0, 0]

.(1 + T,) TDIF,MI). (65)

We introduce wave amplitudes by relating them to the CBM
values of the field components. The cell boundary mapping
for the expanded TLM node is given by

Iai) = l/2(lFm) + ~l~wr;))

(62) lb,) = l/2(lF’Ei} - PIFjwi)) (66)

and

lF~,) = la,) + lb;)

]F~i) = P(]ai) - ]bz)) (67)

with i = 1 for the field components at the three series nodes
of the expanded node and with i = 2 for the field components

summarizes all CBM values of the magnetic field components at the three shunt nodes of the expanded node. We have
at the three shunt nodes of the expanded TLM nodes. In the introduced the matrix
same way, we define the electric field vector IFE2) and the
magnetic field vector IFM2) combining all CBM values of the

1. 1

“Boo
field components at the three series nodes of the expanded P=OBO (68)

TLM nodes. The vector IFE2) is given by 00B

with
+Cc

lF~2) = x
k,l, m,n=–m

“1OOO

IIB= O–loo

o o–lo”

.0001

(69)

The property P2 = 1 ensures that the cell boundary mapping is
a bijective one-to-one mapping between the forty-eight electric
and magnetic field components and the forty-eight incident and

Ik; 1, m, n) (63)
scattered wave amplitudes at one expanded TLM node.

The vector of the incident wave amplitudes, Iai), and the
vector of the scattered wave amplitudes, Ibi), are defined by

+CO

and
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+(X3

lb,) = E ~bil,m,~ Ik; 1,m, n). (71)

k,l, m,n=–cc

For i = 1, the vector lal ) and the vector Ibl ) summarize all
incident and all scattered wave amplitudes at the three shunt
nodes of the expanded TLM nodes. The vectors kal 1,~, ~ and

kbll,~,m are given by

For i = 2, the vector Iaz) and the vector [b2) summarize all
incident and all scattered wave amplitudes at the three series
nodes of the expanded TLM nodes. The vectors ~a2z,~,. and
kbzz,~, n are given by

[kazl,m,n ‘k a3, a4) a7? a8? ‘9; alo)

ITals, al~, alg, a20, a23j a24 t,m,n

,tbzl,m,,, =k[bs, bb, bT, bs>bg>blo>

blq, bib, big, bzo, bzs> bzll:rn, n. (73)

For each boundary surface, the wave amplitudes incident into
one two-dimensional TLM node are identical with the wave
amplitudes scattered from the neighboring
TLM nodes. This relation is expressed by

Ial) =~1 lb2.)

and

la,) =T2 Ibl),

two-dimensional

(74)

where the connection operators ri m-e given by

~l=X(Al, Z+ Aa,l)+A2,1 +A4,3+A5,6+A7,8

+Y+(AG 5 + A8,7) + Z(A9,1O + A11,12)

+ A1o,9 + A12, 11 (75)

and

r2 = r! (76)

with the 12 x 12 (m, n)-matrix (A,, j)m, n = $Z.mfj,n and

with the shift operators X and its Hermitian conjugate Xt
defined by

Xlk; 1, m, n) =/k; 1+ 1, m, n)

XT Ik; 1, m, n )=lk; l-l, m,n). (77)

The operators Y, Z, Yt, and Zt are defined in a similar way
for the discrete coordinates m and n.

We apply the cell boundary mapping to obtain the dis-
cretized field equations for wave amplitudes. Choosing ql = 1
yields one discretized field equations for wave amplitudes

[0, O, 1, 1, 1, 1,0,0,0,0,0, O] lb,)

= [0, O, 1, 1, 1, 1,0,0,0,0,0, O]Z’h Ial). (78)

To determine the 4 x 4-scattering matrix of one two-
dimensional shunt node, we need four discretized field
equations for wave amplitudes. Thus, in total, we need

twenty-four discretized field equations for wave amplitudes to

determine the two 12x 12-scattering matrices of the expanded
TLM node.

In the following, we derive the additional three discretized
field equations for wave amplitudes to determine the scattering
matrix of one two-dimensional shunt node. Sampling (6) and

(7) in the cell boundaries and introducing the CBM values of

the field components, we obtain

[

00–110 0000000
0000 1–1000000
00 11–1–1000000
.(1+T,)r/, pm}=

[

0011 00000000
0000 11000000
00–11–1100000 o1.(1–Th)p&Jl). (79)

For the derivation of (79), we have also used the relations

[

001–10 0001–100

000 01–1000 01–1 1

~(TL + 1) IFE,) =0. (80)

These relations are necessary to derive all of the four dis-
cretized field equations for wave amplitudes at one two-
dimensional shunt node. In total, for the derivation of the
complete TLM scheme for the expanded node, we need six
of these relations given by (80)

[1-100001-10000]

~(TL + 1) /F~2,) = o (81)

and

[

o 01–11–100000 o
1–10000000 01–1
o 0000 01–11–100 1.(q+1) lF~f~) = o. (82)

The six relations for the CBM values of the electric and
magnetic field components are not derived from Maxwell’s
equations. These relations are imposed arbitrarily causing the

scattering at the three shunt nodes to be shifted by half a
discretization interval in space and time with respect to the

scattering at the three series nodes.

We introduce wave amplitudes by the cell boundary map-
ping for the expanded TLM node. Choosing q2 = ql = 1
yields

ZO=Z and ~=~
Crn

(83)

where we have introduced the mesh pulse velocity cm =

Al/At. These results are well-known from literature [2]. From
(79), we obtain

[

00–110 0000000

0000 1l–l OOOOOOlbl)=

00 11–1–1000000

[

00 1 –1 00000000

000

1

o–llooooooz’~la~).

00–1–1 11000000

(84)
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Equations (78) and (84) determine the 4 x 4-scattering matrix

of one two-dimensional shunt node of the expanded TLM node

uniquely. Deriving the remaining five 4 x 4-scattering matrices
of the expanded node in the same way, we obtain

16Z)= ThSz la,) (85)

with the two 12 x 12-scattering matrices of the expanded node

[1

Sil Siz s~
Si = S~ Si~ S,z (86)

Siz S: S,~

where we have introduced

and

as well as

and

““EiH]
0000

[1S12=; ; ; ; : (87)

1100

1100

s~~ = [11100

0011

0011

rO O 1 –11

‘2’=1ii‘i il” ’88)
B. Dispersion Analysis

We eliminate the vectors of the scattered wave amplitudes

and the vector Iaz ), Using (74) and (85), we obtain

(T r, S2 r, s, -I) la,)= o (89)

where we have introduced the time shift operator

qk; 1, m, n) = Ik+ 1;1, m, n). (90)

As shown in [10], [14], (89) in frequent y domain is given by

the eigenvalue equation

(rl S2 T2 S1 – e’~ 1) jal(fl))m = O. (91)

As shown for the FDTD method, the vector Ia(fl))m is given

by

Ia(Q))m =t (Q I~)= ~I(x,~,t)e-”’kQlx,n,O

with the vector of the plane wave amplitudes

l,m, n=–cc

if we restrict our investigations to electromagnetic

composed of plane waves. In this case, the calculation

(92)

(93)

fields

of the

1943

inner product of (x, q, &I and (91) yields the representation

of (91) in wave vector domain

(r, S2 r, s, - e’~)ii,(x, 7/, f)= o (94)

where we have introduced the connection operators in wave

vector domain

~1 =e–~x (AI,2 + A3,4) + A2,1 + A4,3 + A5,6 + A7,8

+ (3Jq(A6,5 + A8,7) + e ‘J< (A9, 10 -1- &, 12 )

+ A10,9 + A12, II (95)

and

Fz = i’:. (96)

Equation (94) has nontrivial solutions if

det (~1 S2 ~2 S1 – e~”) = 0, (97)

From (97), we calculate the eigenvalues Ai = e@’ as

Al,2=c2+4~

A~,4=c2–~~

~5, (j=1

A7,..., I2 =–1 (98)

with

C2 = ; [Cos (x) + cm (n) + cm (’$) + 1]. (99)

The eigenvalues Al, .0. , ~G are identical with the eigenvalues

A, of Yee’s FDTD scheme fc)r the stability factor s =
1/2. The eigenvectors corresponding to these eigenvalues
describe solutions of the TLM scheme which converge to
solutions of Maxwell’s equations for frequencies approaching
zero. We call these eigenvectors the physical eigenvectors

of the TLM method. The eigenvalues AT, . . . , ~lz have

eigenvectors describing solutions of the TLM scheme which
do not converge to solutions of Maxwell’s equations for
frequencies approaching zero. A = – 1 implies Q = m, thus

the eigenvalues J7, 0., , ~12 have unphysical eigenvectors

describing stationary solutions in the TLM mesh oscillating
with the frequency 1/ (2At). In a mesh with expanded TLM
nodes, there are physical eigenvectors with the same disper-
sion characteristics as the FDTDI eigenvectors and unphysical
eigenvectors which do not exist in the FDTD mesh.

IV. THE TLM METHOD WITH
ASYMMETRICALCONDENSEDNODE

The asymmetrical condensed TLM node depicted in Fig. 2
is composed of three two-dimensional TLM shunt nodes and
three two-dimensional TLM series nodes, In contrast to the
expanded node, the six two-dimensional nodes are condensed
in the center of the three-dimensional cubic TLM cell leading
to a 12 x 12-scattering matrix [2], [8]. For the derivation of the
three-dimensional TLM method with asymmetrical condensed
node, we use rectangular pulse functions as subdomain basis
functions with respect to space and time. In contrast to the
derivation of the FDTD method and the TLM method with
expanded node, the field expansions of the magnetic field
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Ii @~,,i,,~~,

@ Shunt Node

Fig. 2. The three-dimensionalasymmetricalcondensedTLM node.

components are identical with the field expansions of the
electric field components. The six linearly independent field
components are defined at the center of the TLM cell. As
test functions, according to Galerkln’s method [4], we use
pulse functions in space and time, too. The derivation of the
asymmetrical condensed TLM node is similar to the derivation
of the two-dimensional TLM method [5].

A. Field Theoretic Derivation

We expand the field components in

k,l, m,n=–m

+m

E, (2, t) = x ~E:~,nhk(t)hn(y)Kt,n(z, z)
k,l, m,n=–m

Am

EZ(2, t) = z kE:~)nhk(~)hn(~)K~,m(~, Y)
k,l, m,n=–cc\

+=3

h,t, m,n=–cc

Iiv (2, t) = E k~:m,nh~(t)hm(y)~l,n(%, ~)
k,l, m,n=–cc

+Cc

Hz(i) t) = z kH(m,nhk(t)h~(z)K~,~(x) Y).
k,l, m,n=–m

(loo)

The functions K1,~ (x, y) are given by the product of two
rectangular pulse functions as

Kl, m(z, y) = h~(~)hm(y). (101)

We insert the field expansions in (3)-(8) and sample the field

components with respect to space using the functions

( l+rn
L;,m(x,y)=h &+~–y

2Ay )

(

l–m
h ~–L–—

2AX )2Ay 2 ‘
(102)

The functions L;, ~ (x, y) are squares in the X–Y Plane ro-

tated by 45° around the ~-axis with respect to the functions
Kl, n (x, y). For the spatial sampling, we need

+m +Cu

[[ L;, m(z, y) Kv, rn/(z, y) dXdy
J–a J–cc

Ax Ay—— ~(&,)*,6m,m

+ &,l/&l, m+l + 4&,1’&, m’)

= tj,p+liim,mf – 151,1,-ldm,m

and

= ($, ~J6m,m/+1– 61,p6m,m,_l.

Furthermore, we need

/

+W
h~(z)h~,~l/z(x) dx

—cc

(103)

dx dy

(104)

dx dy

(105)

(106)

for sampling the field expansions with respect to time. Sam-
pling (3) with hk+l/2(t)ht(z)L~, ~(y, z), we obtain

4k+lE~m,n + k+lE~~+l,n + k+lE~m–l,.

+ k+@; m)n+l + k+lE;m,n–l – ~kE~m,n

—
kE~m+l, n — kE~m–l,n — kE~m, n+l — kE~m, n–l

= ~l(k+l~:m+l, n + k~; m+l)n

—
k+@fm-l, n — kH~m–l,n )

– w(~+@/m, n+l + ‘Jym)n+l

— k+ I@m, n_l — k~~m,n–1 ) (107)

where we have chosen Al according to (19). We define the
field vector

IF’) = ~ k[Ez, E,, E., zHz,
L,z,7n, rL=--

ZHV, ZHz]fn, n 1/%;1, m, n) (108)

as a vector in HF. Sampling (4)–(8) in the same way, we
obtain the six discretized field equations

Ml IF’) = O (109)

with (11 O), shown at the bottom of the next page, where we
have used the abbreviations

D,. =(l+T)-l(l –T)(4+Y+z+Yt+zt)

Dty=(l+T)-l(l –T)(4+x+z+x~+zt)

D,z =(l+T)-l(l –T)(4+x+Y+xf+Yt). (111)
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‘k[~zlt–l/2, m,n

~[Hz]~+l/2, ~, ~

k[%lt-1/2, m,n

k[qlt+l/2, m,n

k[Hz]~, m_l/2, n

k[Hz]~, m+l/2, n

k[Hz]~, m_l/2, n

~[Hz]~, m+l/2, n

k[%!li, m, n--l/2

k[~.vll, m,n-tl/2

,k[Hz]~, m,m._l/2

In the same way as for the expanded TLM node, we introduce

the CBM values of the field components as the values of
the series expansions for the field components at the cell
boundaries. For TLM with asymmetrical condensed node, the
value of the series expansion is identical with the mean value
of the field components of two neighboring cells. For example,

the CBM value -E: ~+l,z) ~ is given by
Ik; 1, m, n) (114)

Lk[Efz]J,m,~.+1/2 J

summarizes all magnetic field components in the cell boundary

We define the electric field vector IJ’E) and the magnetic field surfaces of the TLM mesh with asymmetrical condensed

vector \Fkf ) as vectors in the Hilbert space Iiw. The electric nodes. The relationship between the field components at the

field vector center of a TLM cell and the CBM values of the field
components is given by

1+X
l+xt

o
0
0
0
0
0
0
0

l+Z

o 000
0 000

l+ XOOO
I+xt o 0 0

l+ YOOO
l+Yt o 0 0

0 000

0 000

0 000
0 000
0 000
0 000

0
0
0
0
0
0

l+Y
l+Yt
l+Z
l+zt

o

+Cc

k,l, m,n=–co

k[Eylt-1/2, m,n

k[~&+l/2,m, n

k[~zh-1/2, m,n

k[~z12+1/2, m,n

~[Ez]t, m_l/2, n

~[Ez]t,m+@,~
k[&ll, m-1/2,n

k[&]~, m+l/2,n

k[&]~, rn, n–1/2

k[&]l, m,n+l/2

k[Eyll,7n, n–1/2

k[~Yll, rn, n+l/2

lit;1,m, n)

10 l+z~

(115)

and
0000
0000
0000
0000
0001+Y
o 0 0 l+Yt

0000
0000
0000
0000
Oool+z
,0 0 0 l+zt

o 1+X
o l+xt

1+X o
l+xt o 1
0
0 0
0 ,:y w“)

o l+Yt’

combines all electric field components in the cell boundary
surfaces of the TLM mesh with asymmetrical condensed nodes IFM) = ~
at all discrete time points kAt. The magnetic field vector

l+Z o
l+zt o
0 0
0 0

+Cc

lFM) =Z E
k,l, m,n=–cc (116)

o

~ Dty
m

o 0 Zt–z y–yt -

Xt–x

0

0

0

~ Dtc
712

o

X–xt

o

; Dtz

yt–y

yt–yo
(110)

Z–zt o

x–xio

o 0 0
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We use the symmetrical representation of the scattering matrix

as introduced for the symmetrical condensed node [7]. [18].
Then, the cell boundary mapping for the asymmetrical con-

densed node is identical with the cell boundary
the symmetrical condensed node given by

[a) = l/2(lF3j + PjFM))

lb) = l/2(/FE) - PIF.,))

and

lF~) = la) + lb)

IFN,) =P(la) - lb))

mapping for

(117)

(118)

with the matrix P according to (68) and (69). The property
P2 = 1 ensures that the cell boundary mapping is a bijective
one-to-one mapping between the twenty-four electric and
magnetic field components and the twenty-four incident and
scattered wave amplitudes at one asymmetrical condensed
TLM node.

The vector of the incident wave amplitudes, Ia), and the
vector of the scattered wave amplitudes, Ib), are defined by

+(x

la)= E ~a,, m,n Ik;1, m, n)

Ic, t,m,n=-cc

and

lb) = E k~l, m,n l~; J, ‘, ‘)

k,l, m,n=–m

with

[kal,~,n ‘k Ul, U2, U3> @, U5> ~6>

Uij ~8j ~9> @O> all) ~12]~m, n

kbl,~,n =k[bl, bz, bs, bd, bs, bc,

b~, bg, bg, blo, bll, blz]~~,n.

Since the CBM values of the field components

(119)

(120)

(121)

are also
specified in the neighboring cell boundary surfaces, twelve
CBM values for each TLM cell are linearly independent.
Specifying e.g., all twelve incident wave amplitudes per TLM
cell yields a complete description of the field state. For each
boundary surface, the wave amplitudes incident into one three-
dimensional TLM cell are identical with the wave amplitudes

scattered from the neighboring TLM cells. This relation is
expressed by

la) =rlb)

and

lb) =rla). (122)

The connection operator

r =x(Al,2 +A3,4) +x+(A2)1 +44)3)

+ Y(A5,6 + &,8) + yt(A6,5 + As, 7)

+ Z(A9, 10 + Au, 12) + Z+(A10,9 + A12, 11) (123)

is identical with the connection operator of the symmetrical
condensed TLM node [7].

We rewrite (109) in terms of the CBM values of the field
components and apply the cell boundary mapping for the

asymmetrical condensed TLM node. Choosing ~1 = ~z = 1

yielding again (83), we obtain six discretized field equations
for wave amplitudes

0000 0011 11oo-

1100 0000 0011
0011 1100 0000
000 0–1100 001–1

lb) =

001–1 000 0–1100
_–l loo 001–1 0000.

-o 0 0000 1111oo-
11 0000 000011

00 1111 0000

00 001–1 000 0-!: ‘la)”
0 0–1100 001–100

.1 –1 000 o–lloooo-

(124)

Note that these six discretized field equations for wave am-
plitudes are identical with six discretized field equations for
wave amplitudes used in the derivation of the symmetrical
condensed node [7].

The scattering of the wave amplitudes at one asymmetrical
condensed node is described by a 12 x 12-scattering matrix.
Thus, we need another six discretized field equations for wave

amplitudes to determine the scattering matrix uniquely. We
obtain these additional discretized field equations by sampling
the electromagnetic field asymmetrically with respect to space
using the test functions

(–h ~+~–~–~L:,.(2A Y) –
Ay )

(h ~–~–m+n
Ay )

(125)

which are similar to the functions L: ~(z, g). Introducing
the CBM values of the field components and applying the
cell boundary mapping for the asymmetrical condensed TLM
node yields

“1OOOOOOO oo–lo-
00100–100000 o
000000 01–1000
01000 0–10000

o lb) =

00010000010 0
.0000100000 0 –1_

I

–1 o 00000 00010
00–10010 00000
00 0000 0–11000
01 0000–1 00000

1

T]a).

00 01000 00100
00 00100 0000–1

(126)

Equations (124) and (126) represent twelve discretized field
equations for wave amplitudes, which may be written in the
form

lb) =TSla). ( 127)
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The scattering matrix S of the asymmetrical condensed node in

symmetrical notation is given by (128), shown at the bottom

of the page.

B. The Dispersion Analysis

For the dispersion analysis, we proceecl as demonstrated in
the previous sections. Eliminating the scattered wave ampli-
tudes yields

(I’ S !Z-l)la)=lD, (129)

which implies

det (~ S – e~n) = () (130)

in frequency and wave vector domain assuming plane wave
propagation. The connection operator in wave vector domain
is given by

~ = e-~x (Al,z+ A3,4)+ e~Y (Az,~+ A4,3)

+ e-~q (A5,6 + &,g) + e~q(A&!j + 437)

+ e-~~ (Ag,IO + AII, 12)

(131)+ e~<(A1o,9 + A12, 11).

For the eigenvalues A%= eJ”*, we obtain

A~,~.c~2rJ~-l

A3,~.c~i-/~.l

A5=1

~6 =–1 (132)

with

C3=A+~~?

C4=A–~~? (133)

and

A = $ [COS (x) + COS (q) + COS (r$)]. (134)

The eigenvakres ~7 to ~12 are identical with Al to ~fj. The
eigenvalue & has an unphysical eigenvector describing an
oscillating, stationary solution, the eigenvalue A5 represents

the electromagnetic and magnetostatic case, respectively. The
eigenvectors corresponding to the eigenvalues Al to & de-
scribe the propagating solutions of the TLM scheme. We

calculate the dispersion relation for these eigenvectors from

(132) as

Cos (0) = + (Cos (x) + ~~s (n) + Cos (’0

+ /[cos (x) + Cos (q) + Cos ($)]2 + 7) (135)

for the eigenvalues Al, z and as

Cos (0) = + (Cos (x) + cm (q) + Cos (0

- ~[cos (X)+ cos (q) + cos (<)]2 + 7) (136)

for the eigenvalues A3,~. For small arguments, using cos z R
1 – x2/2 and ~ x 1 – z/2, (137) yields

(137)

which is identical with the dispersion relation of a three-
dimensional wave equation with the wave propagation velocity
c = cr./2. The dispersion relation of A3,1 has no solution for

Q = O but a solution for Q = n. We use cos ($ + II x
–1 +x2/2 and ~ z 1 – x/2 to approximate (136).

Again, we obtain (137). The unphysical eigenvectors with
Q z n and [x, TI,<]T x [m, n, T]’r have the same propagation

characteristics as the physical ei[;envectors with 0 x O and

[x, n) dT x [0, O, O]T. However, using an excitation with a
frequency spectrum bounded sufficiently below ~ = l/(2At),
the solutions described by the unphysical eigenvectors will
not be excited and thus, they will not affect the accuracy of
the field computation. As for FDTD and TLM with expanded
node, there are only physical eigenvectors for frequencies

approaching zero.
For the calculation of the cutoff frequencies, we proceed as

demonstrated for the FDTD method, For wave propagation in
(1, O, O) direction, we have ~ = O and & = O yielding

7 c0s2 ; ;.:;= <1

and f. z 0.1579 ~ (138)

for the cutoff frequency fC. For wave propagation in (1, 1, 1)
direction, we have x = ~ = < yielding

7COS2Q–1
<1 and j. = 0.2272 ~.

6 COS ~
(139)

s=+.

–2 2–lo 2 –1 2–1–105 2 ~

22 0–11 o–5 2 2 1 2 1

–1 0–2 2 2 5 0 1 1 –2 –1 2

0--1221 2 –1 –2–2501

21212210 0 –1 2 –5

–1 o 5 2 2–201 1 –2 –1 ‘2

2 --5 0–1102221 21
–1 2 1–201 2–25 2–lo

–1 2 1–2 o 1 2 5 –2 2–lo

o 1 –2 5–1–21222 o –1

5 2–lo 2 –1 2 –1 –1 o–22

,2 1 2 1–5 2 1 0 0–122.

(128)
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Fig. 3. Dispersiondiagramfor propagationin (1, O,O)direction.
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Fig. 4. Dispersiondiagramfor propagationin (1. 1, O)dkection.

The maximum bandwidth F of the TLM method with asym-
metrical condensed node is given by –0.1579/At s j s
O.1579/.At and F = 0.3158/At, respectively.

Figs. 3–5 illustrate the dispersion characteristics of the

eigenvectors describing the propagating solutions of the TLM
schemes for asymmetrical condensed, expanded and symmet-
rical condensed node. In all three figures, there is a second
branch of the dispersion curves for TLM with asymmetrical
condensed node and for TLM with symmetrical condensed
node which illustrates the dispersion of the unphysical eigen-
vectors. For the curves for TLM with symmetrical condensed
node, the dispersion relation given in [10], [14] has been evalu-
ated. For wave propagation in (1, O, O) direction (Fig. 3), there
is no dispersion for solutions described by the eigenvectors of
the symmetrical condensed node for O < Q < 7r/2. For wave
propagation along the diagonal in the z-y-plane and in (1, 1,
O) direction, respectively (Fig. 4), we have used x = ~ and

& = O in the evaluation of the dispersion relations. In this case,

the dispersion characteristics of the eigenvectors for FDTD
and TLM with expanded node, respectively, are identical with
the dispersion characteristics of the eigenvectors for TLM
with symmetrical condensed node for O < 0 < fl /2. Fig. 5
illustrates the dispersion for wave propagation in (1, 1, 1)

direction. The ambiguity of the physical eigenvectors for TLM
with symmetrical condensed node for frequencies approaching
zero [10], [14] leads to the appearance of spurious modes [19].
In general, the deviations of the dispersion relation for TLM
with asymmetrical condensed node from the linear dispersion
relation are larger than the deviations of the dispersion relation
for FDTD and TLM with expanded node. This confirms the

results for the maximum bandwidth: The maximum bandwidth

of TLM with asymmetrical condensed node is smaller than the
maximum bandwidth of FDTD and TLM with expanded node.

V. CONCLUSION

Applying the Method of Moments to Maxwell’s equations,
field theoretical derivations of the three-dimensional TLM
method with expanded node and of the three-dimensional
TLM method with asymmetrical condensed node have been

given. The same approach has been used to derive Yee’s
FDTD method with central difference approximations. For

this FDTD scheme, there are six linearly independent field
components for each FDTD cell. By a dispersion analysis,
we have shown that all the eigenvectors describe solutions of
the FDTD scheme which converge to solutions of Maxwell’s
equations for frequencies approaching zero. Thus all the six
FDTD eigenvectors represent physical eigenvectors. The low-
est cutoff frequency ~c determining the maximum bandwidth
of the FDTD method is given by ~c = 1/(6 At) for a stability
factor s = 1/2 chosen identical with the stability factor of the
TLM method.

Deriving the TLM method with expanded node, the field
expansions of the magnetic field components are shifted by
half a discretization interval in space and time with respect to
the field expansions of the electric field components. Thus
the series expansions for the electric and magnetic field
components are similar to the series expansions for the field
components of the FDTD scheme. As in FDTD, there are
six linearly independent field components for each three-
dimensional TLM cell. Each of these electric and magnetic
field components is defined at the center of one of the six

two-dimensional TLM nodes of one expanded node. To apply
the cell boundary mapping and to introduce wave amplitudes,
respectively, the CBM (cell boundary mean) values of the field
components are introduced. The CBM values are identical with
the values of the series expansions of the field components
at the cell boundaries. In the derivation, we have used six
relations for the CBM values of the electric and magnetic field
components which are not derived from Maxwell’s equations.
These relations are imposed arbitrarily causing the scattering
at the three shunt nodes to be shifted by half a discretization
interval in space and time with respect to the scattering at
the three series nodes. The relations are necessary in order
to obtain all of the twenty-four discretized field equations for
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Fig. 5. Dispersion diagram for propagation in (1, 1, 1) direction.

wave amplitudes which determine the two 12 x 12-scattering

matrices of the expanded TLM node uniquely. Due to the six

additional relations, unphysical eigenvectors occur in the TLM

scheme for the expanded node. Only six out of the twelve
eigenvectors in the TLM scheme for the expanded node are
physical eigenvectors. These physical eigenvectors have the
same propagation characteristics as the FDTD eigenvectors.
Thus the maximum bandwidth of TLM with expanded node is

the same as for FDTD with the stability factor s = 1/2. The

other six eigenvectors describe spurious solutions of the TLM

scheme which do not exist in the FDTD scheme.

Deriving the TLM method with asymmetrical condensed
node from Maxwell’s equations, the six linearly independent

electric and magnetic field components are defined at the
center of the TLM cell. The twelve CBM values of the field
components correspond to the mean values of the field com-
ponents of two neighboring TLM cells. Sampling Maxwell’s

equations with two different sets of test functions yields

twelve discretized field equations for the field components

and for the wave amplitudes, respectively. As demonstrated

by a dispersion analysis, sampling Maxwell’s equations twice

leads to unphysical eigenvectors of the TLM scheme with

asymmetrical condensed node. Only six out of the twelve

eigenvectors are physical eigenvectors. Compared with FDTD
and TLM with expanded node, respectively, the deviations of
the dispersion relation for the physical eigenvectors from the
linear dispersion relation are larger leading to more dispersion
in a mesh with asymmetrical condensed nodes. This results

in a smaller maximum bandwidth which is determined by the

lowest cutoff frequency of ~C = 0.1579/At.

For the three-dimensional TLM schemes investigated in this
paper and in [7], twelve wave amplitudes and twelve field com-
ponents, respectively, are necessary to determine the complete
field state. For the TLM method with expanded node and for
the TLM method with asymmetrical condensed node, only six
field components are linearly independent for each TLM cell,
whereas for the TLM method with symmetrical condensed

7(

Condensed Node

!2

1949

node, there are twelve linearly independent field components

per TLM cell, In this case, the number of wave amplitudes per
TLM cell corresponds to the number of degrees of freedom

per TLM cell. However, the TLM method with symmetrical
condensed node exhibits disadvantages with respect to the
dispersion characteristics, as there is an ambiguity of the
physical eigenvectors for frequencies approaching zero [10],
[14]. This ambiguity leads to the appearance of spurious modes
[19]. It does not exist for FDTD ;and TLM with expanded and
with asymmetrical condensed node.

In contrast to FDTD, half of the eigenvectors in the TLM

scheme for expanded, asymmetrical condensed and symmet-
rical condensed node are unphysical eigenvectors. The un-
physical eigenvectors describe stationary solutions oscillating
with the frequency j = 1/ (2 At) and modes approaching a
frequency j = l/(2 At) for wave numbers approaching zero,
respectively. Using an excitation with a frequency spectrum
bounded sufficiently below $ = l/(2At), the solutions de-

scribed by the unphysical eigenvectors will not be excited and
thus, they will not affect the accuracy of the field computation.
However, the fact that half of the eigenvectors are unphysical

eigenvectors means that half of the field variables do not
contribute for the calculation (of physical solutions. Thus
there is a redundancy factor of two for three-dimensional
TLM. Therefore in conclusion, from the field theoretical point
of view, each of the investigated three-dimensional TLM
schemes exhibits disadvantages in comparison with Yee’s
FDTD scheme.
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